Continuous Feature Representation for Camouflaged Object Detection

Camouflaged object detection (COD) aims to discover objects that are seamlessly embedded in the environment. Existing COD methods have made significant progress by typically representing features in a discrete way with arrays of pixels. However, limited by discrete representation, these methods need...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 17., Seite 5672-5685
Auteur principal: Song, Ze (Auteur)
Autres auteurs: Kang, Xudong, Wei, Xiaohui, Liu, Jinyang, Lin, Zheng, Li, Shutao
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM392225506
003 DE-627
005 20250918232304.0
007 cr uuu---uuuuu
008 250909s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3602657  |2 doi 
028 5 2 |a pubmed25n1573.xml 
035 |a (DE-627)NLM392225506 
035 |a (NLM)40920532 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Ze  |e verfasserin  |4 aut 
245 1 0 |a Continuous Feature Representation for Camouflaged Object Detection 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Camouflaged object detection (COD) aims to discover objects that are seamlessly embedded in the environment. Existing COD methods have made significant progress by typically representing features in a discrete way with arrays of pixels. However, limited by discrete representation, these methods need to align features of different scales during decoding, which causes some subtle discriminative clues to become blurred. This is a huge blow to the task of identifying camouflaged objects from clear subtle clues. To address this issue, we propose a novel continuous feature representation network (CFRN), which aims to represent features of different scales as a continuous function for COD. Specifically, a Swin transformer encoder is first exploited to explore the global context between camouflaged objects and the background. Then, an object-focusing module (OFM) deployed layer by layer is designed to deeply mine subtle discriminative clues, thereby highlighting the body of camouflaged objects and suppressing other distracting objects at different scales. Finally, a novel frequency-based implicit feature decoder (FIFD) is proposed, which directly decodes the predictions at arbitrary coordinates in the continuous function with implicit neural representations, thus propagating clearer discriminative clues. Extensive experiments on four challenging COD benchmarks demonstrate that our method significantly outperforms state-of-the-art methods. The source code will be available at https://github.com/SongZeHNU/CFRN 
650 4 |a Journal Article 
700 1 |a Kang, Xudong  |e verfasserin  |4 aut 
700 1 |a Wei, Xiaohui  |e verfasserin  |4 aut 
700 1 |a Liu, Jinyang  |e verfasserin  |4 aut 
700 1 |a Lin, Zheng  |e verfasserin  |4 aut 
700 1 |a Li, Shutao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 17., Seite 5672-5685  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:17  |g pages:5672-5685 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3602657  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 17  |h 5672-5685