FocalTransNet : A Hybrid Focal-Enhanced Transformer Network for Medical Image Segmentation

CNNs have demonstrated superior performance in medical image segmentation. To overcome the limitation of only using local receptive field, previous work has attempted to integrate Transformers into convolutional network components such as encoders, decoders, or skip connections. However, these metho...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 30., Seite 5614-5627
Auteur principal: Liao, Miao (Auteur)
Autres auteurs: Yang, Ruixin, Zhao, Yuqian, Liang, Wei, Yuan, Junsong
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM392224399
003 DE-627
005 20250910232203.0
007 cr uuu---uuuuu
008 250909s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3602739  |2 doi 
028 5 2 |a pubmed25n1563.xml 
035 |a (DE-627)NLM392224399 
035 |a (NLM)40889311 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liao, Miao  |e verfasserin  |4 aut 
245 1 0 |a FocalTransNet  |b A Hybrid Focal-Enhanced Transformer Network for Medical Image Segmentation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.09.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a CNNs have demonstrated superior performance in medical image segmentation. To overcome the limitation of only using local receptive field, previous work has attempted to integrate Transformers into convolutional network components such as encoders, decoders, or skip connections. However, these methods can only establish long-distance dependencies for some specific patterns and usually neglect the loss of fine-grained details during downsampling in multi-scale feature extraction. To address the issues, we present a novel hybrid Transformer network called FocalTransNet. Specifically, we construct a focal-enhanced (FE) Transformer module by introducing dense cross-connections into a CNN-Transformer dual-path structure and deploy the FE Transformer throughout the entire encoder. Different from existing hybrid networks that employ embedding or stacking strategies, the proposed model allows for a comprehensive extraction and deep fusion of both local and global features at different scales. Besides, we propose a symmetric patch merging (SPM) module for downsampling, which can retain the fine-grained details by establishing a specific information compensation mechanism. We evaluated the proposed method on four different medical image segmentation benchmarks. The proposed method outperforms previous state-of-the-art convolutional networks, Transformers, and hybrid networks. The code for FocalTransNet is publicly available at https://github.com/nemanjajoe/FocalTransNet 
650 4 |a Journal Article 
700 1 |a Yang, Ruixin  |e verfasserin  |4 aut 
700 1 |a Zhao, Yuqian  |e verfasserin  |4 aut 
700 1 |a Liang, Wei  |e verfasserin  |4 aut 
700 1 |a Yuan, Junsong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 30., Seite 5614-5627  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:30  |g pages:5614-5627 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3602739  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 30  |h 5614-5627