Constraint-based metabolic modeling reveals metabolic properties underpinning the unprecedented growth of Chlorella ohadii

© 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.

Détails bibliographiques
Publié dans:The New phytologist. - 1979. - 248(2025), 3 vom: 15. Okt., Seite 1572-1583
Auteur principal: Soleymani, Fayaz (Auteur)
Autres auteurs: Correa, Sandra Marcela, Arend, Marius, Forghanisardaghi, Niayesh, Treves, Haim, Razaghi-Moghadam, Zahra, Nikoloski, Zoran
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:The New phytologist
Sujets:Journal Article Chlorella ohadii de novo model reconstruction gene targets genome‐scale metabolic model growth improvement metabolic model comparison
LEADER 01000caa a22002652c 4500
001 NLM392129299
003 DE-627
005 20251004231943.0
007 cr uuu---uuuuu
008 250906s2025 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.70528  |2 doi 
028 5 2 |a pubmed25n1589.xml 
035 |a (DE-627)NLM392129299 
035 |a (NLM)40913342 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Soleymani, Fayaz  |e verfasserin  |4 aut 
245 1 0 |a Constraint-based metabolic modeling reveals metabolic properties underpinning the unprecedented growth of Chlorella ohadii 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2025 
500 |a Date Revised 04.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. 
520 |a Comparative molecular and physiological analyses of organisms from one taxonomic group grown under similar conditions offer a strategy to identify gene targets for trait improvement. While this strategy can also be performed in silico using genome-scale metabolic models for the compared organisms, we continue to lack solutions for the de novo generation of such models, particularly for eukaryotes. To facilitate model-driven identification of gene targets for growth improvement in green algae, here we present a semiautomated platform for de novo generation of genome-scale algal metabolic models. We deployed this platform to reconstruct an enzyme-constrained, genome-scale metabolic model of Chlorella ohadii, the fastest growing green alga reported to date, and validated the growth predictions in experiments under three growth conditions. We also proposed a computational strategy to identify targets for growth improvement based on flux analyses. Extensive flux-based comparative analyses using all existing models of green algae resulted in the identification of potential targets for growth improvement not only in standard but also in extreme light conditions, where C. ohadii still exhibits exceptional growth. Our findings indicate that the developed platform provides the basis for the generation of pan-genome-scale metabolic models of algae 
650 4 |a Journal Article 
650 4 |a Chlorella ohadii 
650 4 |a de novo model reconstruction 
650 4 |a gene targets 
650 4 |a genome‐scale metabolic model 
650 4 |a growth improvement 
650 4 |a metabolic model comparison 
700 1 |a Correa, Sandra Marcela  |e verfasserin  |4 aut 
700 1 |a Arend, Marius  |e verfasserin  |4 aut 
700 1 |a Forghanisardaghi, Niayesh  |e verfasserin  |4 aut 
700 1 |a Treves, Haim  |e verfasserin  |4 aut 
700 1 |a Razaghi-Moghadam, Zahra  |e verfasserin  |4 aut 
700 1 |a Nikoloski, Zoran  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 248(2025), 3 vom: 15. Okt., Seite 1572-1583  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnas 
773 1 8 |g volume:248  |g year:2025  |g number:3  |g day:15  |g month:10  |g pages:1572-1583 
856 4 0 |u http://dx.doi.org/10.1111/nph.70528  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 248  |j 2025  |e 3  |b 15  |c 10  |h 1572-1583