Molecular Basis of UG-Rich Element Recognition by ESRP2 RRM3

© 2025 John Wiley & Sons Ltd.

Détails bibliographiques
Publié dans:Magnetic resonance in chemistry : MRC. - 1985. - (2025) vom: 04. Sept.
Auteur principal: Kumari, Pooja (Auteur)
Autres auteurs: Yadav, Priya, Bhavesh, Neel Sarovar
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Magnetic resonance in chemistry : MRC
Sujets:Journal Article ESRP2 NMR structure RRM RRM‐RNA interaction alternative splicing
LEADER 01000naa a22002652c 4500
001 NLM392072343
003 DE-627
005 20250906234436.0
007 cr uuu---uuuuu
008 250906s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/mrc.70034  |2 doi 
028 5 2 |a pubmed25n1558.xml 
035 |a (DE-627)NLM392072343 
035 |a (NLM)40908720 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kumari, Pooja  |e verfasserin  |4 aut 
245 1 0 |a Molecular Basis of UG-Rich Element Recognition by ESRP2 RRM3 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 John Wiley & Sons Ltd. 
520 |a Epithelial splicing regulatory protein 2 (ESRP2) plays a pivotal role in alternative splicing regulation, particularly in maintaining epithelial cell identity and suppressing epithelial-to-mesenchymal transition (EMT). Despite its biological significance, the structural basis for its RNA-binding specificity remains poorly understood. In this study, we report the solution structure and RNA-binding properties of the RNA Recognition Motif (RRM3) of human ESRP2 using an integrative approach combining nuclear magnetic resonance (NMR) spectroscopy, ITC, molecular docking, and MD simulations. Our structural analysis revealed that ESRP2-RRM3 adopts a canonical RRM fold (βαββαβ), featuring a positively charged β-sheet surface conducive to RNA interaction. ITC assays demonstrated that RRM3 binds UG-rich RNA sequences with moderate affinity, and NMR titrations identified key interacting residues within the conserved RNP motifs, particularly F522 and R480. RNA docking and MD simulations further corroborated these interactions, revealing π-π stacking and hydrogen bonding at the protein-RNA interface. These findings represent the first atomic-level characterization of ESRP2's interaction with its RNA targets and provide mechanistic insight into how it may guide alternative splicing events in vivo. This work lays the groundwork for understanding the modular RNA recognition by ESRP2's multiple RRMs and its broader role in splicing regulation, development, and cancer suppression 
650 4 |a Journal Article 
650 4 |a ESRP2 
650 4 |a NMR structure 
650 4 |a RRM 
650 4 |a RRM‐RNA interaction 
650 4 |a alternative splicing 
700 1 |a Yadav, Priya  |e verfasserin  |4 aut 
700 1 |a Bhavesh, Neel Sarovar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in chemistry : MRC  |d 1985  |g (2025) vom: 04. Sept.  |w (DE-627)NLM098179667  |x 1097-458X  |7 nnas 
773 1 8 |g year:2025  |g day:04  |g month:09 
856 4 0 |u http://dx.doi.org/10.1002/mrc.70034  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 04  |c 09