AI-Driven Defect Engineering for Advanced Thermoelectric Materials

© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 35 vom: 17. Sept., Seite e2505642
Auteur principal: Fu, Chu-Liang (Auteur)
Autres auteurs: Cheng, Mouyang, Hung, Nguyen Tuan, Rha, Eunbi, Chen, Zhantao, Okabe, Ryotaro, Carrizales, Denisse Córdova, Mandal, Manasi, Cheng, Yongqiang, Li, Mingda
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Review artificial intelligence defect engineering machine learning thermoelectrics
LEADER 01000caa a22002652c 4500
001 NLM392020343
003 DE-627
005 20250907231847.0
007 cr uuu---uuuuu
008 250906s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202505642  |2 doi 
028 5 2 |a pubmed25n1560.xml 
035 |a (DE-627)NLM392020343 
035 |a (NLM)40545859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Chu-Liang  |e verfasserin  |4 aut 
245 1 0 |a AI-Driven Defect Engineering for Advanced Thermoelectric Materials 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Thermoelectric materials offer a promising pathway to directly convert waste heat to electricity. However, achieving high performance remains challenging due to intrinsic trade-offs between electrical conductivity, the Seebeck coefficient, and thermal conductivity, which are further complicated by the presence of defects. This review explores how artificial intelligence (AI) and machine learning (ML) are transforming thermoelectric materials design. Advanced ML approaches including deep neural networks, graph-based models, and transformer architectures, integrated with high-throughput simulations and growing databases, effectively capture structure-property relationships in a complex multiscale defect space and overcome the "curse of dimensionality". This review discusses AI-enhanced defect engineering strategies such as composition optimization, entropy and dislocation engineering, and grain boundary design, along with emerging inverse design techniques for generating materials with targeted properties. Finally, it outlines future opportunities in novel physics mechanisms and sustainability, highlighting the critical role of AI in accelerating the discovery of thermoelectric materials 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a artificial intelligence 
650 4 |a defect engineering 
650 4 |a machine learning 
650 4 |a thermoelectrics 
700 1 |a Cheng, Mouyang  |e verfasserin  |4 aut 
700 1 |a Hung, Nguyen Tuan  |e verfasserin  |4 aut 
700 1 |a Rha, Eunbi  |e verfasserin  |4 aut 
700 1 |a Chen, Zhantao  |e verfasserin  |4 aut 
700 1 |a Okabe, Ryotaro  |e verfasserin  |4 aut 
700 1 |a Carrizales, Denisse Córdova  |e verfasserin  |4 aut 
700 1 |a Mandal, Manasi  |e verfasserin  |4 aut 
700 1 |a Cheng, Yongqiang  |e verfasserin  |4 aut 
700 1 |a Li, Mingda  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 35 vom: 17. Sept., Seite e2505642  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:35  |g day:17  |g month:09  |g pages:e2505642 
856 4 0 |u http://dx.doi.org/10.1002/adma.202505642  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 35  |b 17  |c 09  |h e2505642