Causal effect estimation for competing risk data in randomized trial : adjusting covariates to gain efficiency

© 2025 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 52(2025), 11 vom: 29., Seite 2094-2112
1. Verfasser: Cho, Youngjoo (VerfasserIn)
Weitere Verfasser: Zheng, Cheng, Qi, Lihong, Prentice, Ross L, Zhang, Mei-Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62N02 Causal inference clinical trial competing risk nonlinear effects random forest
LEADER 01000caa a22002652c 4500
001 NLM39200044X
003 DE-627
005 20250916235115.0
007 cr uuu---uuuuu
008 250906s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2025.2455626  |2 doi 
028 5 2 |a pubmed25n1570.xml 
035 |a (DE-627)NLM39200044X 
035 |a (NLM)40904946 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cho, Youngjoo  |e verfasserin  |4 aut 
245 1 0 |a Causal effect estimation for competing risk data in randomized trial  |b adjusting covariates to gain efficiency 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.09.2025 
500 |a Date Revised 15.09.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The double-blinded randomized trial is considered the gold standard to estimate the average causal effect (ACE). The naive estimator without adjusting any covariate is consistent. However, incorporating the covariates that are strong predictors of the outcome could reduce the issue of unbalanced covariate distribution between the treated and controlled groups and can improve efficiency. Recent work has shown that thanks to randomization, for linear regression, an estimator under risk consistency (e.g. Random Forest) for the regression coefficients could maintain the convergence rate even when a nonparametric model is assumed for the effect of covariates. Also, such an adjusted estimator will always lead to efficiency gain compared to the naive unadjusted estimator. In this paper, we extend this result to the competing risk data setting and show that under similar assumptions, the augmented inverse probability censoring weighting (AIPCW) based adjusted estimator has the same convergence rate and efficiency gain. Extensive simulations were performed to show the efficiency gain in the finite sample setting. To illustrate our proposed method, we apply it to the Women's Health Initiative (WHI) dietary modification trial studying the effect of a low-fat diet on cardiovascular disease (CVD) related mortality among those who have prior CVD 
650 4 |a Journal Article 
650 4 |a 62N02 
650 4 |a Causal inference 
650 4 |a clinical trial 
650 4 |a competing risk 
650 4 |a nonlinear effects 
650 4 |a random forest 
700 1 |a Zheng, Cheng  |e verfasserin  |4 aut 
700 1 |a Qi, Lihong  |e verfasserin  |4 aut 
700 1 |a Prentice, Ross L  |e verfasserin  |4 aut 
700 1 |a Zhang, Mei-Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 11 vom: 29., Seite 2094-2112  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:11  |g day:29  |g pages:2094-2112 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2025.2455626  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 11  |b 29  |h 2094-2112