A Photo-Patternable Solid-State Electrolyte for High-Performance, Miniaturized, and Implantable Organic Electrochemical Transistor-Based Circuits

© 2025 The Author(s). Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 22. Aug., Seite e09314
1. Verfasser: Xiong, Miao (VerfasserIn)
Weitere Verfasser: Yang, Chi-Yuan, Ji, Junpeng, Caravaca, April S, Guo, Qi, Li, Qifan, Donahue, Mary J, Gao, Dace, Wu, Han-Yan, Marks, Adam, Xu, Yincai, Tu, Deyu, McCulloch, Iain, Olofsson, Peder S, Fabiano, Simone
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article implantable bioelectronics integrated complementary logic circuits organic electrochemical transistors photo‐patternable solid‐state electrolyte
Beschreibung
Zusammenfassung:© 2025 The Author(s). Advanced Materials published by Wiley-VCH GmbH.
Organic electrochemical transistors (OECTs) are crucial for next-generation (bio-)electronic devices but are often constrained by the use of aqueous electrolytes, which introduce crosstalk, hinder miniaturization, and limit circuit integration. Here, a photo-patternable solid-state electrolyte based on 𝜄-carrageenan (𝜄-CGN) and poly(ethylene glycol) diacrylate (PEGDA) is presented, enabling high-performance OECTs and complementary circuits. The 𝜄-CGN electrolyte exhibits high ionic conductivity (>10 mS cm-1), comparable to a 0.1 m NaCl aqueous electrolyte, while supporting precise patterning down to 15 µm, fast transient response times, minimal hysteresis, and excellent stability in both p- and n-type OECTs. Compact solid-state NAND/NOR gates (500 × 800 µm2), 4-input NAND gates (1600 × 800 µm2, 8 OECTs), and half-adders (2 × 1 mm2, 18 OECTs) are demonstrated, all exhibiting correct logic functions and low-voltage operation. To highlight its potential for implantable bioelectronics, solid-state spiking circuits, monolithically integrated with flexible cuff electrodes, are developed for vagus nerve stimulation in mice. These findings establish 𝜄-CGN-based solid-state electrolytes as a promising platform for scalable, implantable circuits, paving the way for next-generation bioelectronic devices
Beschreibung:Date Revised 22.08.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202509314