Biocatalytic and Redox-Regulated Nanoarchitectures for Precision Inflammation and Immune Homeostasis Modulation to Combat Rheumatoid Arthritis
© 2025 Wiley‐VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 33 vom: 01. Aug., Seite e2502147 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2025
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article antioxidase‐like materials biocatalytic therapies bioinspired materials inflammation diseases nanomedicine and nanoarchitecture Reactive Oxygen Species Ruthenium 7UI0TKC3U5 Ferric Compounds |
| Zusammenfassung: | © 2025 Wiley‐VCH GmbH. The chronic inflammatory milieu of rheumatoid arthritis (RA), marked by elevated reactive oxygen species (ROS), perpetually activated pro-inflammatory macrophages (M1) and osteoclasts, and significant infiltration of pro-inflammatory cytokines contributes to abnormal articular redox imbalance, severe synovitis, and progressive joint erosion. In this study, the rational design of a biocatalytic and redox-regulated nanoarchitecture comprising Ru cluster-anchored hydroxylated Fe2O3 (Ru-HFO) encapsulated within bone marrow stem cell-derived extracellular vesicles (BEVs), for precision inflammation modulation to combat RA is proposed. When combined with ultrasound (US) stimulation, this biocatalytic and inflammation-targeting nanoarchitecture (BEVsRu-HFO) can reprogram macrophages and osteoclasts to restore redox and immune homeostasis, thereby alleviating RA. The findings reveal that the hydroxylation strategy enhances electron density at Ru redox centers and fine-tunes the binding affinity of oxygen intermediates, thereby ensuring exceptional multi-enzymatic ROS-scavenging activities. Notably, under ultrasonic irradiation, BEVs@Ru-HFO targets inflamed joints, promotes the local accumulation of anti-inflammatory macrophages, downregulates inflammatory cytokines, and ameliorates the hypoxic microenvironment to inhibit osteoclastogenesis. This ultimately confers bone and cartilage protection and restores joint function. It is posit that this biocatalytic and redox-regulated nanoarchitecture, with its superior antioxidant and immunomodulatory capabilities, represents a promising strategy for engineering ROS-catalytic materials to treat RA and potentially many other autoimmune diseases |
|---|---|
| Beschreibung: | Date Completed 21.08.2025 Date Revised 21.08.2025 published: Print-Electronic Citation Status MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202502147 |