MeViS : A Multi-Modal Dataset for Referring Motion Expression Video Segmentation

This paper proposes a large-scale multi-modal dataset for referring motion expression video segmentation, focusing on segmenting and tracking target objects in videos based on language description of objects' motions. Existing referring video segmentation datasets often focus on salient objects...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 19. Aug.
1. Verfasser: Ding, Henghui (VerfasserIn)
Weitere Verfasser: Liu, Chang, He, Shuting, Ying, Kaining, Jiang, Xudong, Loy, Chen Change, Jiang, Yu-Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM391447696
003 DE-627
005 20250828002342.0
007 cr uuu---uuuuu
008 250820s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3600507  |2 doi 
028 5 2 |a pubmed25n1546.xml 
035 |a (DE-627)NLM391447696 
035 |a (NLM)40828703 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Henghui  |e verfasserin  |4 aut 
245 1 0 |a MeViS  |b A Multi-Modal Dataset for Referring Motion Expression Video Segmentation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a This paper proposes a large-scale multi-modal dataset for referring motion expression video segmentation, focusing on segmenting and tracking target objects in videos based on language description of objects' motions. Existing referring video segmentation datasets often focus on salient objects and use language expressions rich in static attributes, potentially allowing the target object to be identified in a single frame. Such datasets underemphasize the role of motion in both videos and languages. To explore the feasibility of using motion expressions and motion reasoning clues for pixel-level video understanding, we introduce MeViS, a dataset containing 33,072 human-annotated motion expressions in both text and audio, covering 8,171 objects in 2,006 videos of complex scenarios. We benchmark 15 existing methods across 4 tasks supported by MeViS, including 6 referring video object segmentation (RVOS) methods, 3 audio-guided video object segmentation (AVOS) methods, 2 referring multi-object tracking (RMOT) methods, and 4 video captioning methods for the newly introduced referring motion expression generation (RMEG) task. The results demonstrate weaknesses and limitations of existing methods in addressing motion expression-guided video understanding. We further analyze the challenges and propose an approach LMPM++ for RVOS/AVOS/RMOT that achieves new state-of-the-art results. Our dataset provides a platform that facilitates the development of motion expression-guided video understanding algorithms in complex video scenes. The proposed MeViS dataset and the method's source code are released at https://henghuiding.github.io/MeViS 
650 4 |a Journal Article 
700 1 |a Liu, Chang  |e verfasserin  |4 aut 
700 1 |a He, Shuting  |e verfasserin  |4 aut 
700 1 |a Ying, Kaining  |e verfasserin  |4 aut 
700 1 |a Jiang, Xudong  |e verfasserin  |4 aut 
700 1 |a Loy, Chen Change  |e verfasserin  |4 aut 
700 1 |a Jiang, Yu-Gang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 19. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:19  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3600507  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 19  |c 08