Scaling up Multimodal Pre-Training for Sign Language Understanding

Sign language pre-training (SLP) has significantly improved the performance of diverse sign language understanding (SLU) tasks. However, many existing methods employ pre-training techniques that are tailored to a specific task with small data scale, resulting in limited model generalization. Some ot...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 14. Aug.
1. Verfasser: Zhou, Wengang (VerfasserIn)
Weitere Verfasser: Zhao, Weichao, Hu, Hezhen, Li, Zecheng, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM391241001
003 DE-627
005 20250815232642.0
007 cr uuu---uuuuu
008 250815s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3599313  |2 doi 
028 5 2 |a pubmed25n1531.xml 
035 |a (DE-627)NLM391241001 
035 |a (NLM)40811156 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
245 1 0 |a Scaling up Multimodal Pre-Training for Sign Language Understanding 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Sign language pre-training (SLP) has significantly improved the performance of diverse sign language understanding (SLU) tasks. However, many existing methods employ pre-training techniques that are tailored to a specific task with small data scale, resulting in limited model generalization. Some others focus solely on exploring visual cues, neglecting semantically textual cues embedded in sign translation texts. These limitations inherently diminish the representative capacity of pre-trained models. To this end, we present a multimodal SLP framework to leverage rich visual contextual information and vision-language semantic consistency with massively available data to enhance the representative capability of sign language video. Specifically, we first curate a large-scale text-labeled sign pose dataset ($\sim$ 1.5M), namely SL-1.5M, from various sources to alleviate the scarcity of pre-training data. Subsequently, we propose a pre-training framework, which integrates sign-text contrastive learning with masked pose modeling as the pretext task. In this way, our framework is empowered to effectively capture contextual cues within sign pose sequences and learn visual representation by aligning semantical text-rich features in a latent space. Moreover, in order to grasp the comprehensive meaning of sign language videos, we concurrently model manual and non-manual information to ensure the holistic integrity of visual content. To validate the generalization and superiority of our proposed pre-trained framework, we conduct extensive experiments without intricate design on diverse SLU tasks, achieving new state-of-the-art performance on multiple benchmarks 
650 4 |a Journal Article 
700 1 |a Zhao, Weichao  |e verfasserin  |4 aut 
700 1 |a Hu, Hezhen  |e verfasserin  |4 aut 
700 1 |a Li, Zecheng  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 14. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:14  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3599313  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 14  |c 08