SPARE : Symmetrized Point-to-Plane Distance for Robust Non-Rigid 3D Registration
Existing optimization-based methods for non-rigid registration typically minimize an alignment error metric based on the point-to-point or point-to-plane distance between corresponding point pairs on the source surface and target surface. However, these metrics can result in slow convergence or a lo...
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 13. Aug. |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2025
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
| Schlagworte: | Journal Article |
| Zusammenfassung: | Existing optimization-based methods for non-rigid registration typically minimize an alignment error metric based on the point-to-point or point-to-plane distance between corresponding point pairs on the source surface and target surface. However, these metrics can result in slow convergence or a loss of detail. In this paper, we propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration. The symmetrized point-to-plane distance relies on both the positions and normals of the corresponding points, resulting in a more accurate approximation of the underlying geometry and can achieve higher accuracy than existing methods. To solve this optimization problem efficiently, we introduce an as-rigid-as-possible regulation term to estimate the deformed normals and propose an alternating minimization solver using a majorization-minimization strategy. Moreover, for effective initialization of the solver, we incorporate a deformation graph-based coarse alignment that improves registration quality and efficiency. Extensive experiments show that the proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency. The code is publicly available at https://github.com/yaoyx689/spare |
|---|---|
| Beschreibung: | Date Revised 13.08.2025 published: Print-Electronic Citation Status Publisher |
| ISSN: | 1939-3539 |
| DOI: | 10.1109/TPAMI.2025.3598630 |