Long-Range Order and Strong Quantum Coupling Enabled Stable Carrier Transport for Reliable Neuromorphic Computing

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 13. Aug., Seite e09083
Auteur principal: Wang, Zhiqing (Auteur)
Autres auteurs: Shen, Jie, Chen, Keqiang, Yang, Jing, Wang, Qiao, Yin, Zhiwen, Hu, Zhi-Yi, Zeng, Jianrong, Zhang, Pengchao, Chen, Wen, Zhou, Jing
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article long‐range order neuromorphic computing quantum dot superlattices robust reliability strong quantum coupling
LEADER 01000naa a22002652c 4500
001 NLM391121685
003 DE-627
005 20250813232735.0
007 cr uuu---uuuuu
008 250813s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202509083  |2 doi 
028 5 2 |a pubmed25n1529.xml 
035 |a (DE-627)NLM391121685 
035 |a (NLM)40801165 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Zhiqing  |e verfasserin  |4 aut 
245 1 0 |a Long-Range Order and Strong Quantum Coupling Enabled Stable Carrier Transport for Reliable Neuromorphic Computing 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Bio-inspired neuromorphic computing based on memristors holds significant potential for performing massively parallel computational tasks with high accuracy. However, its practical application is significantly limited by poor reliability, primarily due to instability in carrier transport. Here, long-range ordered quantum dot (QD) superlattices with strong quantum coupling is presented to enable carrier transport stability and improve device reliability. Leveraging a data-assisted QD synthesis optimization loop, Cu12Sb4S13 QDs are synthesized with precisely controlled growth kinetics, crystal orientation, and surface chemistry. These QDs self-assemble into long-range ordered superlattices on flexible substrates, achieving a 56% reduction in inter-dot spacing (to 0.92 nm), aligned lattice orientations, and a 4.4-fold increase in carrier mobility. This architecture enables strong quantum coupling, effectively overcoming the limitations imposed by localized quantum-confined states. As a result, the QD-based memristors exhibit remarkable reliability, with variations below 0.1% over 8.4 × 107 s of continuous operation and 106 rapid read cycles. They further demonstrate linear potentiation and depression characteristics (vp = 2.03 and vd = 2.33), a wide conductance range (Gmax/Gmin = 264), and high recognition accuracy (93.31%) as validated by chip-level convolutional neural network simulations. This work establishes a robust and flexible platform for memristor-based neuromorphic computing, offering a promising route to overcoming critical challenges in device reliability and computational performance 
650 4 |a Journal Article 
650 4 |a long‐range order 
650 4 |a neuromorphic computing 
650 4 |a quantum dot superlattices 
650 4 |a robust reliability 
650 4 |a strong quantum coupling 
700 1 |a Shen, Jie  |e verfasserin  |4 aut 
700 1 |a Chen, Keqiang  |e verfasserin  |4 aut 
700 1 |a Yang, Jing  |e verfasserin  |4 aut 
700 1 |a Wang, Qiao  |e verfasserin  |4 aut 
700 1 |a Yin, Zhiwen  |e verfasserin  |4 aut 
700 1 |a Hu, Zhi-Yi  |e verfasserin  |4 aut 
700 1 |a Zeng, Jianrong  |e verfasserin  |4 aut 
700 1 |a Zhang, Pengchao  |e verfasserin  |4 aut 
700 1 |a Chen, Wen  |e verfasserin  |4 aut 
700 1 |a Zhou, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 13. Aug., Seite e09083  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:13  |g month:08  |g pages:e09083 
856 4 0 |u http://dx.doi.org/10.1002/adma.202509083  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 13  |c 08  |h e09083