GLC++ : Source-Free Universal Domain Adaptation Through Global-Local Clustering and Contrastive Affinity Learning

Deep neural networks often exhibit sub-optimal performance under covariate and category shifts. Source-Free Domain Adaptation (SFDA) presents a promising solution to this dilemma, yet most SFDA approaches are restricted to closed-set scenarios. In this paper, we explore Source-Free Universal Domain...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 05. Okt., Seite 10646-10663
Auteur principal: Qu, Sanqing (Auteur)
Autres auteurs: Zou, Tianpei, Rohrbein, Florian, Lu, Cewu, Chen, Guang, Tao, Dacheng, Jiang, Changjun
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article