GLC++ : Source-Free Universal Domain Adaptation Through Global-Local Clustering and Contrastive Affinity Learning
Deep neural networks often exhibit sub-optimal performance under covariate and category shifts. Source-Free Domain Adaptation (SFDA) presents a promising solution to this dilemma, yet most SFDA approaches are restricted to closed-set scenarios. In this paper, we explore Source-Free Universal Domain...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 05. Okt., Seite 10646-10663
|
| Auteur principal: |
Qu, Sanqing
(Auteur) |
| Autres auteurs: |
Zou, Tianpei,
Rohrbein, Florian,
Lu, Cewu,
Chen, Guang,
Tao, Dacheng,
Jiang, Changjun |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2025
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
| Sujets: | Journal Article |