GLC++ : Source-Free Universal Domain Adaptation Through Global-Local Clustering and Contrastive Affinity Learning

Deep neural networks often exhibit sub-optimal performance under covariate and category shifts. Source-Free Domain Adaptation (SFDA) presents a promising solution to this dilemma, yet most SFDA approaches are restricted to closed-set scenarios. In this paper, we explore Source-Free Universal Domain...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 05. Okt., Seite 10646-10663
1. Verfasser: Qu, Sanqing (VerfasserIn)
Weitere Verfasser: Zou, Tianpei, Rohrbein, Florian, Lu, Cewu, Chen, Guang, Tao, Dacheng, Jiang, Changjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article