VLPose : Bridging the Domain Gap in Pose Estimation With Language-Vision Tuning

Thanks to advances in deep learning techniques, Human Pose Estimation (HPE) has achieved significant progress in natural scenarios. However, these models perform poorly in artificial scenarios such as painting and sculpture due to the domain gap, constraining the development of virtual reality and a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 10836-10847
Auteur principal: Li, Jingyao (Auteur)
Autres auteurs: Chen, Pengguang, Ju, Xuan, Liu, Shu, Xu, Hong, Jia, Jiaya
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390990671
003 DE-627
005 20251007231857.0
007 cr uuu---uuuuu
008 250812s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3594097  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM390990671 
035 |a (NLM)40788797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jingyao  |e verfasserin  |4 aut 
245 1 0 |a VLPose  |b Bridging the Domain Gap in Pose Estimation With Language-Vision Tuning 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Thanks to advances in deep learning techniques, Human Pose Estimation (HPE) has achieved significant progress in natural scenarios. However, these models perform poorly in artificial scenarios such as painting and sculpture due to the domain gap, constraining the development of virtual reality and augmented reality. With the growth of model size, retraining the whole model on both natural and artificial data is computationally expensive and inefficient. Our research aims to bridge the domain gap between natural and artificial scenarios with efficient tuning strategies. Leveraging the potential of language models, we enhance the adaptability of traditional pose estimation models across diverse scenarios with a novel framework called VLPose. VLPose leverages the synergy between language and vision to extend the generalization and robustness of pose estimation models beyond the traditional domains. Our approach has demonstrated improvements of 2.26% and 3.74% on HumanArt and MSCOCO, respectively, compared to state-of-the-art tuning strategies 
650 4 |a Journal Article 
700 1 |a Chen, Pengguang  |e verfasserin  |4 aut 
700 1 |a Ju, Xuan  |e verfasserin  |4 aut 
700 1 |a Liu, Shu  |e verfasserin  |4 aut 
700 1 |a Xu, Hong  |e verfasserin  |4 aut 
700 1 |a Jia, Jiaya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 01. Okt., Seite 10836-10847  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:01  |g month:10  |g pages:10836-10847 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3594097  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 01  |c 10  |h 10836-10847