Dubbing Movies via Hierarchical Phoneme Modeling and Acoustic Diffusion Denoising

Given a piece of text, a video clip, and reference audio, the movie dubbing (also known as Visual Voice Cloning, V2C) task aims to generate speeches that clone reference voice and align well with the video in both emotion and lip movement, which is more challenging than conventional text-to-speech s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 02. Okt., Seite 10361-10377
1. Verfasser: Li, Liang (VerfasserIn)
Weitere Verfasser: Cong, Gaoxiang, Qi, Yuankai, Zha, Zheng-Jun, Wu, Qi, Sheng, Quan Z, Huang, Qingming, Yang, Ming-Hsuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390868779
003 DE-627
005 20251004231918.0
007 cr uuu---uuuuu
008 250809s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3597267  |2 doi 
028 5 2 |a pubmed25n1589.xml 
035 |a (DE-627)NLM390868779 
035 |a (NLM)40779382 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Liang  |e verfasserin  |4 aut 
245 1 0 |a Dubbing Movies via Hierarchical Phoneme Modeling and Acoustic Diffusion Denoising 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.10.2025 
500 |a Date Revised 03.10.2025 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Given a piece of text, a video clip, and reference audio, the movie dubbing (also known as Visual Voice Cloning, V2C) task aims to generate speeches that clone reference voice and align well with the video in both emotion and lip movement, which is more challenging than conventional text-to-speech synthesis tasks. To align the generated speech with the inherent lip motion of the given silent video, most existing works utilize each video frame to query textual phonemes. However, such an attention operation usually leads to mumble speech because different phonemes are fused for video frames corresponding to one phoneme (video frames are finer-grained than phonemes). To address this issue, we propose a diffusion-based movie dubbing architecture, which improves pronunciation by Hierarchical Phoneme Modeling (HPM) and generates better mel-spectrogram through Acoustic Diffusion Denoising (ADD). We term our model as HD-Dubber. Specifically, our HPM bridges the visual information and corresponding speech prosody from three aspects: (1) aligning lip movement with the speech duration based on each phoneme unit by contrastive learning; (2) conveying facial expression to phoneme-level energy and pitch; and (3) injecting global emotions captured from video scenes into prosody. On the other hand, ADD exploits a denoising diffusion framework to transform the noise signal into a mel-spectrogram via a parameterized Markov chain conditioned on textual phonemes and reference audio. ADD has two novel denoisers, the Style-adaptive Residual Denoiser (SRD) and the Phoneme-enhanced U-net Denoiser (PUD), to enhance speaker similarity and improve pronunciation quality. Extensive experimental results on the three benchmark datasets demonstrate the state-of-the-art performance of the proposed method. The source code and trained models will be made available to the public 
650 4 |a Journal Article 
700 1 |a Cong, Gaoxiang  |e verfasserin  |4 aut 
700 1 |a Qi, Yuankai  |e verfasserin  |4 aut 
700 1 |a Zha, Zheng-Jun  |e verfasserin  |4 aut 
700 1 |a Wu, Qi  |e verfasserin  |4 aut 
700 1 |a Sheng, Quan Z  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 02. Okt., Seite 10361-10377  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:02  |g month:10  |g pages:10361-10377 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3597267  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 02  |c 10  |h 10361-10377