CAN : Cascade Augmentations Against Noise for Image Restoration

Image restoration aims to recover the latent clean image from a degraded counterpart. In general, the prevailing state-of-the-art image restoration methods concentrate on solving only a specific degradation type according to the task, e.g., deblurring or deraining. However, if the corresponding well...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 20., Seite 5131-5146
1. Verfasser: Yan, Yanyang (VerfasserIn)
Weitere Verfasser: Yao, Siyuan, Ren, Wenqi, Zhang, Rui, Guo, Qi, Cao, Xiaochun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390868698
003 DE-627
005 20250828000508.0
007 cr uuu---uuuuu
008 250809s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3595374  |2 doi 
028 5 2 |a pubmed25n1545.xml 
035 |a (DE-627)NLM390868698 
035 |a (NLM)40779376 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Yanyang  |e verfasserin  |4 aut 
245 1 0 |a CAN  |b Cascade Augmentations Against Noise for Image Restoration 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image restoration aims to recover the latent clean image from a degraded counterpart. In general, the prevailing state-of-the-art image restoration methods concentrate on solving only a specific degradation type according to the task, e.g., deblurring or deraining. However, if the corresponding well-trained frameworks confront other real-world image corruptions, i.e., the corruptions are not covered in the training phase, and state-of-the-art restoration models will suffer from a lack of generalization ability. We have observed that an image restoration model can be easily confused by noise corruption. Towards improving the robustness of image restoration networks, in this paper, we focus on alleviating the corruption of noise in various image restoration tasks, which is almost inevitable in real-world scenes. To this end, we devise a novel Cascade Augmentation strategy against Noise (CAN) to enhance the robustness of specific image restoration. Specifically, the given degraded images are sequentially augmented from different perspectives, i.e., noise-aware augmentation and model-aware augmentation. The noise-aware augmentation is proposed to enrich the samples by introducing various noise operations. Moreover, to adapt to more unknown corruptions, we propose a novel model-aware augmentation mechanism, which enhances the scalability by exploring useful both spatial and frequency clues with the help of model randomness. It is worth noting that the proposed augmentation scheme is model-agnostic, and it can plug and play into arbitrary state-of-the-art image restoration architectures. In addition, we construct noise corruption benchmark datasets, derived from the validation set of standard image restoration datasets, to assist us in evaluating the robustness of restoration networks. Extensive quantitative and qualitative evaluations demonstrate that the proposed method has strong generalization capability, which can enhance the robustness of various image restoration frameworks when facing diverse noises 
650 4 |a Journal Article 
700 1 |a Yao, Siyuan  |e verfasserin  |4 aut 
700 1 |a Ren, Wenqi  |e verfasserin  |4 aut 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
700 1 |a Guo, Qi  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 20., Seite 5131-5146  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:20  |g pages:5131-5146 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3595374  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 20  |h 5131-5146