Atomically Precise Ruddlesden-Popper Faults Induced Enhanced Emission in Ligand Stabilized Mixed Halide Perovskites

© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 08. Aug., Seite e03680
1. Verfasser: Mahato, Somnath (VerfasserIn)
Weitere Verfasser: Roy, Baidyanath, Bose, Shaona, Sangwan, Satayender K, Das, Narayan Chandra, Birowosuto, Muhammad Danang, Ray, Samit K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CsPbBr3 QDs Ruddlesden–Popper faults anion exchange double‐Cs‐corrected HAADF‐STEM flexible light‐emitting diodes
LEADER 01000naa a22002652c 4500
001 NLM390854018
003 DE-627
005 20250808232700.0
007 cr uuu---uuuuu
008 250808s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202503680  |2 doi 
028 5 2 |a pubmed25n1524.xml 
035 |a (DE-627)NLM390854018 
035 |a (NLM)40778654 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mahato, Somnath  |e verfasserin  |4 aut 
245 1 0 |a Atomically Precise Ruddlesden-Popper Faults Induced Enhanced Emission in Ligand Stabilized Mixed Halide Perovskites 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Atomic-resolution imaging of Ruddlesden-Popper (RP) interfaces is challenging due to their concealment within perovskite nanocrystals (NCs) and the inherent limitations of conventional characterization techniques. In this study, distinctly oriented RP faults have been detected using double-Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (STEM). A simple yet reliable STEM approach to achieve atomically precise identification of Pb, Cs, Br, and I atoms and analyze their spatial atomic arrangements in a single NC is employed. In addition, dislocations caused by lattice mismatch at grain boundaries (GBs) are identified. Lattice strain in GBs and RPs is determined and quantified, revealing that neither of these planar defects introduces the deep trap levels. Therefore, in absence of Pb dangling bonds or Pb─Pb bonds in GBs and RPs plays a crucial role in stabilizing NCs and preventing ion migration. Incorporating n-octylammonium iodide in pristine CsPbBr3 quantum dots leads to the formation of CsPbBr3- xIx NCs, resulting in a significant redshift in electroluminescence (≈496-623 nm) with enhanced intensity (±79%), attributed to higher exciton lifetime, increased exciton binding energy, and improved carrier confinement in flexible light-emitting devices. Density functional theory calculations confirm that additional carriers localized at the interface enhance electron-hole recombination, ensuring stable charge transportation for lighting devices 
650 4 |a Journal Article 
650 4 |a CsPbBr3 QDs 
650 4 |a Ruddlesden–Popper faults 
650 4 |a anion exchange 
650 4 |a double‐Cs‐corrected HAADF‐STEM 
650 4 |a flexible light‐emitting diodes 
700 1 |a Roy, Baidyanath  |e verfasserin  |4 aut 
700 1 |a Bose, Shaona  |e verfasserin  |4 aut 
700 1 |a Sangwan, Satayender K  |e verfasserin  |4 aut 
700 1 |a Das, Narayan Chandra  |e verfasserin  |4 aut 
700 1 |a Birowosuto, Muhammad Danang  |e verfasserin  |4 aut 
700 1 |a Ray, Samit K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 08. Aug., Seite e03680  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:08  |g month:08  |g pages:e03680 
856 4 0 |u http://dx.doi.org/10.1002/adma.202503680  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 08  |c 08  |h e03680