Hard Carbon for Sodium-Ion Batteries : From Fundamental Research to Practical Applications

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 39 vom: 01. Okt., Seite e2504574
1. Verfasser: Pei, Bingying (VerfasserIn)
Weitere Verfasser: Yu, Haiqing, Zhang, Lei, Fang, Guozhao, Zhou, Jiang, Cao, Xinxin, Liang, Shuquan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review full‐cell applications fundamental research hard carbon modification strategies sodium‐ion batteries
LEADER 01000caa a22002652c 4500
001 NLM390835587
003 DE-627
005 20251010232054.0
007 cr uuu---uuuuu
008 250808s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202504574  |2 doi 
028 5 2 |a pubmed25n1594.xml 
035 |a (DE-627)NLM390835587 
035 |a (NLM)40776819 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pei, Bingying  |e verfasserin  |4 aut 
245 1 0 |a Hard Carbon for Sodium-Ion Batteries  |b From Fundamental Research to Practical Applications 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Sodium-ion batteries (SIBs) have emerged as a promising technology for large-scale energy storage due to their unique performance characteristics and raw material accessibility. Among various anode materials, hard carbon (HC) stands out due to its high Na storage capacity, structural stability, and intrinsic safety. However, the structural complexity and heterogeneity of HC present ongoing challenges in understanding its structural models and Na storage mechanisms, impeding the rational design and performance optimization of HC-based anodes. This review provides a systematic overview of recent advances in HC for SIBs, beginning with an in-depth examination of representative structural models and the underlying structure-property relationships. The review critically analyzes Na storage mechanisms and bridges these insights with a diverse array of modification strategies-including precursor design, structural tailoring, and surface/interface optimization. Special emphasis is placed on improving initial Coulombic efficiency, rate capability, and long-term cycling stability. Furthermore, practical challenges related to full-cell integration are discussed, such as pre-sodiation techniques and electrolyte/interface engineering to enhance the real-world applicability of HC. By integrating fundamental understanding with forward-looking design strategies, this review provides a valuable reference for the development of high-performance, cost-effective SIB systems, and to inspire future research directions in sodium-ion energy storage 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a full‐cell applications 
650 4 |a fundamental research 
650 4 |a hard carbon 
650 4 |a modification strategies 
650 4 |a sodium‐ion batteries 
700 1 |a Yu, Haiqing  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Fang, Guozhao  |e verfasserin  |4 aut 
700 1 |a Zhou, Jiang  |e verfasserin  |4 aut 
700 1 |a Cao, Xinxin  |e verfasserin  |4 aut 
700 1 |a Liang, Shuquan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 39 vom: 01. Okt., Seite e2504574  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:39  |g day:01  |g month:10  |g pages:e2504574 
856 4 0 |u http://dx.doi.org/10.1002/adma.202504574  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 39  |b 01  |c 10  |h e2504574