Anisotropy of Interfacial Bond-Induced Atom Removal Mechanisms of Silicon

Using chemical mechanical polishing (CMP) to flatten the surface of polycrystalline silicon wafers is a crucial step in semiconductor device manufacturing. The pending issue for such a process is the uneven surface removal during CMP of polycrystalline Si wafers. Such a phenomenon leads to the forma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 41(2025), 32 vom: 19. Aug., Seite 21859-21868
1. Verfasser: Zhang, Diankai (VerfasserIn)
Weitere Verfasser: Qin, Jie, Wang, Yang, Chen, Lei, Xiao, Chen, Franklin, Steven E, Qian, Linmao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390810428
003 DE-627
005 20250828000433.0
007 cr uuu---uuuuu
008 250808s2025 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5c03133  |2 doi 
028 5 2 |a pubmed25n1545.xml 
035 |a (DE-627)NLM390810428 
035 |a (NLM)40774286 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Diankai  |e verfasserin  |4 aut 
245 1 0 |a Anisotropy of Interfacial Bond-Induced Atom Removal Mechanisms of Silicon 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Using chemical mechanical polishing (CMP) to flatten the surface of polycrystalline silicon wafers is a crucial step in semiconductor device manufacturing. The pending issue for such a process is the uneven surface removal during CMP of polycrystalline Si wafers. Such a phenomenon leads to the formation of surface microprotrusions on the wafers, while the underlying mechanism is not well understood. This work aims to reveal the mechanisms of anisotropic atomic removal from the perspective of bond formation and breakage by simulating the atomic removal process of crystal silicon by using molecular dynamics simulations. The results indicate that the differences in atomic removal behaviors for various crystal faces of silicon are attributed to their different atomic surface densities and hydrophilicities, which lead to different interfacial bond-forming abilities. However, there is no difference in the abilities to remove the atom by interfacial bonds for these crystal faces. In addition, the removal mechanism of the amorphous structure has also been revealed to represent the grain boundaries. Compared with the (100) crystal face, an amorphous surface has a similar bond formation capability but a higher rate of atomic removal. Such phenomena suggest a lower removal energy barrier for the amorphous face compared with the other three crystal faces, which explains their different atomic removal. In summary, this work unveils the atomic-scale mechanisms behind the uneven removal during the polishing of polycrystalline silicon. This revelation is conducive to the advancement of mechanical chemical polishing technology for polycrystalline silicon 
650 4 |a Journal Article 
700 1 |a Qin, Jie  |e verfasserin  |4 aut 
700 1 |a Wang, Yang  |e verfasserin  |4 aut 
700 1 |a Chen, Lei  |e verfasserin  |4 aut 
700 1 |a Xiao, Chen  |e verfasserin  |4 aut 
700 1 |a Franklin, Steven E  |e verfasserin  |4 aut 
700 1 |a Qian, Linmao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 41(2025), 32 vom: 19. Aug., Seite 21859-21868  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:41  |g year:2025  |g number:32  |g day:19  |g month:08  |g pages:21859-21868 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5c03133  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 41  |j 2025  |e 32  |b 19  |c 08  |h 21859-21868