On Structuring Hyperspherical Manifold for Probing Novel Biomedical Entities

The insufficient high- throughput modeling capability for high-dimensional, multiscale, and nonlinear real-world observations and measurements stands as one of the major impediments for modern science advancements. In this regard, machine learning holds tremendous promise for transforming the fundam...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 07. Aug.
1. Verfasser: Fan, Jianan (VerfasserIn)
Weitere Verfasser: Liu, Dongnan, Chang, Hang, Huang, Heng, Chen, Mei, Cai, Weidong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM390801496
003 DE-627
005 20250808232353.0
007 cr uuu---uuuuu
008 250808s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3596597  |2 doi 
028 5 2 |a pubmed25n1524.xml 
035 |a (DE-627)NLM390801496 
035 |a (NLM)40773385 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Jianan  |e verfasserin  |4 aut 
245 1 0 |a On Structuring Hyperspherical Manifold for Probing Novel Biomedical Entities 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The insufficient high- throughput modeling capability for high-dimensional, multiscale, and nonlinear real-world observations and measurements stands as one of the major impediments for modern science advancements. In this regard, machine learning holds tremendous promise for transforming the fundamental practice of scientific discovery by virtue of its data-driven disposition. With the ever-increasing stream of research data collection, it would be appealing to automate the exploration of patterns and insights from observational data for discovering novel classes of phenotypes and entities. However, in the discipline of biomedical investigation, the cumulative data is intrinsically subjected to non-i.i.d. distribution and severe biases amongst different clusters, inducing disorganization and ambiguity in the learned representation space. To contend with the inherent challenges, in this paper, we present a geometry- constrained probabilistic modeling treatment on hyperspherical manifolds. It firstly parameterizes the approximated posterior of instance- wise embedding as a marginal von MisesFisher distribution to account for the interference of distributional latent shift, and thereafter incorporates a suite of critical inductive biases to organically shape the layout of tailored embedding space. Together, these advancements offer a systematic solution to regularize the uncontrollable risk for unseen class learning and prospecting. Furthermore, we propose a spectral graph-theoretic method to efficiently estimate the number of potential novel classes and endow the prediction with adorable taxonomy adaptability. Through extensive experiments under various settings, we demonstrate the effectiveness and general applicability of the proposed methods in recognizing and structurally phenotyping novel visual concepts 
650 4 |a Journal Article 
700 1 |a Liu, Dongnan  |e verfasserin  |4 aut 
700 1 |a Chang, Hang  |e verfasserin  |4 aut 
700 1 |a Huang, Heng  |e verfasserin  |4 aut 
700 1 |a Chen, Mei  |e verfasserin  |4 aut 
700 1 |a Cai, Weidong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 07. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:07  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3596597  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 07  |c 08