GPHM : Gaussian Parametric Head Model for Monocular Head Avatar Reconstruction

Creating high-fidelity 3D human head avatars is crucial for applications in VR/AR, digital human, and film production. Recent advances have leveraged morphable face models to generate animated head avatars from easily accessible data, representing varying identities and expressions within a low-dime...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 06. Aug.
1. Verfasser: Xu, Yuelang (VerfasserIn)
Weitere Verfasser: Su, Zhaoqi, Wu, Qingyao, Liu, Yebin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM390739340
003 DE-627
005 20250807232433.0
007 cr uuu---uuuuu
008 250807s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3596331  |2 doi 
028 5 2 |a pubmed25n1523.xml 
035 |a (DE-627)NLM390739340 
035 |a (NLM)40768457 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yuelang  |e verfasserin  |4 aut 
245 1 0 |a GPHM  |b Gaussian Parametric Head Model for Monocular Head Avatar Reconstruction 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Creating high-fidelity 3D human head avatars is crucial for applications in VR/AR, digital human, and film production. Recent advances have leveraged morphable face models to generate animated head avatars from easily accessible data, representing varying identities and expressions within a low-dimensional parametric space. However, existing methods often struggle with modeling complex appearance details, e.g., hairstyles, and suffer from low rendering quality and efficiency. In this paper we introduce a novel approach, 3D Gaussian Parametric Head Model, which employs 3D Gaussians to accurately represent the complexities of the human head, allowing precise control over both identity and expression. The Gaussian model can handle intricate details, enabling realistic representations of varying appearances and complex expressions. Furthermore, we presents a well-designed training framework to ensure smooth convergence, providing a robust guarantee for learning the rich content. Our method achieves high-quality, photo-realistic rendering with real-time efficiency, making it a valuable contribution to the field of parametric head models. Finally, we apply the 3D Gaussian Parametric Head Model to monocular video or few-shot head avatar reconstruction tasks, which enables instant reconstruction of high-quality 3D head avatars even when input data is extremely limited, surpassing previous methods in terms of reconstruction quality and training speed. Project page: https://yuelangx.github.io/gphmv2/ 
650 4 |a Journal Article 
700 1 |a Su, Zhaoqi  |e verfasserin  |4 aut 
700 1 |a Wu, Qingyao  |e verfasserin  |4 aut 
700 1 |a Liu, Yebin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 06. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:06  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3596331  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 06  |c 08