Real-World Adversarial Defense against Patch Attacks based on Diffusion Model

Adversarial patches present significant challenges to the robustness of deep learning models, making the development of effective defenses become critical for real-world applications. This paper introduces DIFFender, a novel DIFfusion-based DeFender framework that leverages the power of a text-guide...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 06. Aug.
Auteur principal: Wei, Xingxing (Auteur)
Autres auteurs: Kang, Caixin, Dong, Yinpeng, Wang, Zhengyi, Ruan, Shouwei, Chen, Yubo, Su, And Hang
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article