Covalent Tridentate Molecule Anchoring Enhances Nickel Oxide for Efficient Perovskite Solar Cells

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 06. Aug., Seite e07730
1. Verfasser: Wang, Yu (VerfasserIn)
Weitere Verfasser: Feng, Yu, Yang, Hao, Li, Saisai, Zhang, Kai, Feng, Yanxing, Han, Xue, Alshahrani, Thamraa, An, Qinyou, Wang, Xiaoye, Li, Hongshi, Jiang, Yuanzhi, Yuan, Mingjian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article NiOx energy level regulation perovskite solar cells tridentate dipole molecules
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Nickel oxide (NiOx) is a promising hole transport material for perovskite solar cells, but its high surface defect density and energy level mismatch with perovskite limit device efficiency. Conventional organic surface modifiers, relying on weak hydrogen bonds or single covalent bonds, fail to anchor stably to NiOx, hindering their functional effectiveness. Here, A multidentate anchoring organic molecule, [4-(trifluoromethyl)phenyl]triethoxysilane (3F-PTES), is presented, forming robust tridentate covalent bonds with the NiOx surface and significantly enhances interfacial binding strength and surface coverage compared with conventional groups (e.g., carboxyl). As a result, the interfacial defect density is reduced by 2.5-fold compared with carboxyl-modified counterparts and significantly suppresses the deprotonation reaction between NiOx and perovskite, thereby greatly improving interfacial contact. The designed trifluoromethyl terminal group further enables precise tuning of NiOx energy levels, achieving near-ideal band alignment with perovskite (energy offset ΔE = 0.01 eV). Incorporating this modified NiOx into inverted devices, a champion power conversion efficiency (PCE) of 26.47% is achieved, along with outstanding operational stability, retaining 97% of their initial efficiency after 1500 h of continuous operation under maximum power point tracking (65 °C, 60% relative humidity, AM 1.5G illumination, ISOS-L-3 protocol)
Beschreibung:Date Revised 06.08.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202507730