Mapping adsorption on ionic surfaces via a pairwise potential-based high-throughput approach

© Eric Mates-Torres et al. 2025.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 58(2025), Pt 4 vom: 01. Aug., Seite 1462-1468
1. Verfasser: Mates-Torres, Eric (VerfasserIn)
Weitere Verfasser: Ugliengo, Piero, Rimola, Albert
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article automation high-throughput techniques interactions potential energies surfaces
LEADER 01000caa a22002652c 4500
001 NLM390701785
003 DE-627
005 20250808232315.0
007 cr uuu---uuuuu
008 250806s2025 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576725005230  |2 doi 
028 5 2 |a pubmed25n1524.xml 
035 |a (DE-627)NLM390701785 
035 |a (NLM)40765953 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mates-Torres, Eric  |e verfasserin  |4 aut 
245 1 0 |a Mapping adsorption on ionic surfaces via a pairwise potential-based high-throughput approach 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.08.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Eric Mates-Torres et al. 2025. 
520 |a Understanding molecular adsorption on ionic surfaces is crucial for a variety of chemical applications, from heterogeneous catalysis to prebiotic chemistry. Traditional approaches for identifying adsorption sites often rely on computationally expensive methods such as density functional theory (DFT), which limits their applicability to chemically complex surfaces. In this work, we propose an automated high-throughput approach to obtain a complete picture of the adsorbate-surface interaction by means of pairwise Coulomb and Lennard-Jones potentials. Using a grid-based surface scan to calculate per-site potential energies of adsorption, this method efficiently predicts global adsorption minima and all potential binding modes of a surface-adsorbate system, with the only user input being the surface CIF. Our approach is validated by studying formaldehyde (H2CO) adsorption on forsterite (Mg2SiO4), a common silicate, and l-cysteine adsorption on cadmium sulfide (CdS). The predicted adsorption configurations and energies are compared with DFT values in the literature, showing good agreement and confirming the accuracy of our method. Our workflow provides a rapid means of exploring large configurational spaces and identifying stable adsorption structures, making it particularly useful for complex surfaces with multiple interaction sites. The simplicity of the model, combined with its accuracy, suggest it could be employed to discover new catalytic pathways on chemically complex ionic surfaces 
650 4 |a Journal Article 
650 4 |a automation 
650 4 |a high-throughput techniques 
650 4 |a interactions 
650 4 |a potential energies 
650 4 |a surfaces 
700 1 |a Ugliengo, Piero  |e verfasserin  |4 aut 
700 1 |a Rimola, Albert  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 58(2025), Pt 4 vom: 01. Aug., Seite 1462-1468  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnas 
773 1 8 |g volume:58  |g year:2025  |g number:Pt 4  |g day:01  |g month:08  |g pages:1462-1468 
856 4 0 |u http://dx.doi.org/10.1107/S1600576725005230  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 58  |j 2025  |e Pt 4  |b 01  |c 08  |h 1462-1468