HandNeRF++ : Modeling Animatable Interacting Hands With Neural Radiance Fields

In this work, we explore the rendering of photo-realistic free-viewpoint hand pose animation. We present HandNeRF, the first NeRF-based framework to reconstruct accurate appearance and geometry for interacting hands. To overcome the texture contamination and shape artifact problems when dealing with...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 9 vom: 06. Aug., Seite 8102-8116
1. Verfasser: Guo, Zhiyang (VerfasserIn)
Weitere Verfasser: Zhou, Wengang, Wang, Min, Li, Li, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390662712
003 DE-627
005 20250807232054.0
007 cr uuu---uuuuu
008 250806s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3574845  |2 doi 
028 5 2 |a pubmed25n1523.xml 
035 |a (DE-627)NLM390662712 
035 |a (NLM)40478711 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Zhiyang  |e verfasserin  |4 aut 
245 1 0 |a HandNeRF++  |b Modeling Animatable Interacting Hands With Neural Radiance Fields 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we explore the rendering of photo-realistic free-viewpoint hand pose animation. We present HandNeRF, the first NeRF-based framework to reconstruct accurate appearance and geometry for interacting hands. To overcome the texture contamination and shape artifact problems when dealing with complex interacting scenarios, we further introduce HandNeRF++ to achieve better performance. In our advanced framework, a pose-driven deformation field is designed to establish correspondence from diverse poses to a canonical space, where the pose- and shape-disentangled NeRFs are optimized. To enhance the geometry and texture cues in rarely-observed areas for interacting hands, we establish a connection between the interacting hands by proposing the adaptive hand-sharing technique for cross-hand augmentation. Meanwhile, we further leverage the hand poses to generate fine-grained density priors, serving as valuable guidance for occlusion-aware geometry learning. Furthermore, a neural feature distillation method and a neural refiner are proposed to facilitate color optimization and further polish the renderings. With the collaboration of all the modules and strategies, our HandNeRF++ significantly advances the capabilities of NeRF-based 3D reconstruction in the context of interacting hands. Extensive experiments are conducted to validate the merits of the proposed frameworks. We report a series of state-of-the-art results both qualitatively and quantitatively 
650 4 |a Journal Article 
700 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
700 1 |a Wang, Min  |e verfasserin  |4 aut 
700 1 |a Li, Li  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 9 vom: 06. Aug., Seite 8102-8116  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:9  |g day:06  |g month:08  |g pages:8102-8116 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3574845  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 9  |b 06  |c 08  |h 8102-8116