Spatial Re-Parameterization for N:M Sparsity
This paper presents a Spatial Re-parameterization (SpRe) method for the N:M sparsity. SpRe stems from an observation regarding the restricted variety in spatial sparsity of convolution kernels presented in N:M sparsity compared with unstructured sparsity. Particularly, N:M sparsity exhibits a fixed...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 9 vom: 04. Aug., Seite 7704-7714 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2025
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | This paper presents a Spatial Re-parameterization (SpRe) method for the N:M sparsity. SpRe stems from an observation regarding the restricted variety in spatial sparsity of convolution kernels presented in N:M sparsity compared with unstructured sparsity. Particularly, N:M sparsity exhibits a fixed sparsity rate within the spatial domains due to its distinctive pattern that mandates N non-zero components among M successive weights in the input channel dimension of convolution filters. On the contrary, we observe that conventional unstructured sparsity displays a substantial divergence in sparsity across the spatial domains, which we experimentally verify to be very crucial for its robust performance retention compared with N:M sparsity. Therefore, SpRe employs the spatial-sparsity distribution of unstructured sparsity by assigning an extra branch in conjunction with the original N:M branch at training time, which allows the N:M sparse network to sustain a similar distribution of spatial sparsity with unstructured sparsity. During inference, the extra branch can be further re-parameterized into the main N:M branch, without exerting any distortion on the sparse pattern or additional computation costs. SpRe has achieved a commendable feat by matching the performance of N:M sparsity methods with state-of-the-art unstructured sparsity methods across various benchmarks. Our project is available at https://github.com/zyxxmu/SpRE |
---|---|
Beschreibung: | Date Revised 07.08.2025 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2025.3572240 |