Segment Concealed Objects With Incomplete Supervision

Incompletely-Supervised Concealed Object Segmentation (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments, utilizing incompletely annotated data, such as weak and semi-annotations, for model training. This task remains highly challenging due to (1) the limit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 9 vom: 07. Aug., Seite 7832-7851
1. Verfasser: He, Chunming (VerfasserIn)
Weitere Verfasser: Li, Kai, Zhang, Yachao, Yang, Ziyun, Pang, Youwei, Tang, Longxiang, Fang, Chengyu, Zhang, Yulun, Kong, Linghe, Li, Xiu, Farsiu, Sina
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390662232
003 DE-627
005 20250807232050.0
007 cr uuu---uuuuu
008 250806s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3576209  |2 doi 
028 5 2 |a pubmed25n1523.xml 
035 |a (DE-627)NLM390662232 
035 |a (NLM)40460017 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Chunming  |e verfasserin  |4 aut 
245 1 0 |a Segment Concealed Objects With Incomplete Supervision 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Incompletely-Supervised Concealed Object Segmentation (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments, utilizing incompletely annotated data, such as weak and semi-annotations, for model training. This task remains highly challenging due to (1) the limited supervision provided by the incompletely annotated training data, and (2) the difficulty of distinguishing concealed objects from the background, which arises from the intrinsic similarities in concealed scenarios. In this paper, we introduce the first unified method for ISCOS to address these challenges. To tackle the issue of incomplete supervision, we propose a unified mean-teacher framework, SEE, that leverages the vision foundation model, "Segment Anything Model (SAM)", to generate pseudo-labels using coarse masks produced by the teacher model as prompts. To mitigate the effect of low-quality segmentation masks, we introduce a series of strategies for pseudo-label generation, storage, and supervision. These strategies aim to produce informative pseudo-labels, store the best pseudo-labels generated, and select the most reliable components to guide the student model, thereby ensuring robust network training. Additionally, to tackle the issue of intrinsic similarity, we design a hybrid-granularity feature grouping module that groups features at different granularities and aggregates these results. By clustering similar features, this module promotes segmentation coherence, facilitating more complete segmentation for both single-object and multiple-object images. We validate the effectiveness of our approach across multiple ISCOS tasks, and experimental results demonstrate that our method achieves state-of-the-art performance. Furthermore, SEE can serve as a plug-and-play solution, enhancing the performance of existing models 
650 4 |a Journal Article 
700 1 |a Li, Kai  |e verfasserin  |4 aut 
700 1 |a Zhang, Yachao  |e verfasserin  |4 aut 
700 1 |a Yang, Ziyun  |e verfasserin  |4 aut 
700 1 |a Pang, Youwei  |e verfasserin  |4 aut 
700 1 |a Tang, Longxiang  |e verfasserin  |4 aut 
700 1 |a Fang, Chengyu  |e verfasserin  |4 aut 
700 1 |a Zhang, Yulun  |e verfasserin  |4 aut 
700 1 |a Kong, Linghe  |e verfasserin  |4 aut 
700 1 |a Li, Xiu  |e verfasserin  |4 aut 
700 1 |a Farsiu, Sina  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 9 vom: 07. Aug., Seite 7832-7851  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:9  |g day:07  |g month:08  |g pages:7832-7851 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3576209  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 9  |b 07  |c 08  |h 7832-7851