Deep Equilibrium Object Detection and Segmentation

Query-based object detectors and segmenters have made great progress in their respective tasks by employing an iterative refinement decoder. These query-based methods directly represent object instances with a set of learnable queries. These query vectors are progressively refined to stable, meaning...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 10094-10111
1. Verfasser: Wang, Shuai (VerfasserIn)
Weitere Verfasser: Teng, Yao, Wang, Limin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390617695
003 DE-627
005 20251007231854.0
007 cr uuu---uuuuu
008 250806s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3595380  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM390617695 
035 |a (NLM)40758523 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shuai  |e verfasserin  |4 aut 
245 1 0 |a Deep Equilibrium Object Detection and Segmentation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Query-based object detectors and segmenters have made great progress in their respective tasks by employing an iterative refinement decoder. These query-based methods directly represent object instances with a set of learnable queries. These query vectors are progressively refined to stable, meaningful representations through a sequence of decoder layers, and then used to directly predict object locations (mask or box) and categories with customized heads. In this paper, we present a novel query-based object decoder design with infinite refinement (DEQ-Decoder) through a deep equilibrium model (DEQ). Our DEQ-Decoder models the query vector refinement as the fixed point solving of an implicit (DEQ) layer. To be more specific to query refinement, we use a two-step unrolled equilibrium equation to explicitly capture the query vector refinement. Accordingly, we are able to incorporate refinement awareness into the DEQ-Decoder training with the inexact gradient back-propagation (RAG). In addition, to stabilize the training of our DEQ-Decoder and improve its generalization ability, we devise a deep supervision scheme on the optimization path of DEQ-Decoder with refinement-aware perturbation (RAP). To demonstrate the effectiveness of DEQ-Decoder, we apply it to object detection and instance segmentation. For object detection, we propose DEQDet based on our DEQ-Decode. DEQDet converges faster, consumes less memory, and achieves better results than the baseline counterpart (AdaMixer). In particular, our DEQDet with ResNet50 backbone and 300 queries achieves the 49.6 mAP and 33.9 AP$_{s}$s on the MS COCO benchmark under $2\times$2× training scheme (24 epochs). For instance segmentation, Our DEQSeg achieves much better box mAP metrics and slightly better mask metrics for different mask decoding branches 
650 4 |a Journal Article 
700 1 |a Teng, Yao  |e verfasserin  |4 aut 
700 1 |a Wang, Limin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 01. Okt., Seite 10094-10111  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:01  |g month:10  |g pages:10094-10111 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3595380  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 01  |c 10  |h 10094-10111