CycleACR : Cycle Modeling of Actor-Context Relations for Video Action Detection

The relation modeling between actors and scene context advances video action detection where the correlation of multiple actors makes their action recognition challenging. Existing studies model each actor and scene relation to improve action recognition. However, the scene variations and background...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 10588-10603
Auteur principal: Chen, Lei (Auteur)
Autres auteurs: Tong, Zhan, Song, Yibing, Wu, Gangshan, Wang, Limin
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390617687
003 DE-627
005 20251007231853.0
007 cr uuu---uuuuu
008 250806s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3595393  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM390617687 
035 |a (NLM)40758518 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Lei  |e verfasserin  |4 aut 
245 1 0 |a CycleACR  |b Cycle Modeling of Actor-Context Relations for Video Action Detection 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The relation modeling between actors and scene context advances video action detection where the correlation of multiple actors makes their action recognition challenging. Existing studies model each actor and scene relation to improve action recognition. However, the scene variations and background interference limit their effectiveness. In this paper, we propose to select actor-related scene context, rather than directly laveraging raw video scenario, to improve relation modeling. We develop a Cycle Actor-Context Relation network (CycleACR) where there is a symmetric graph that models the actor and context relations in a bidirectional form. Specifically, our CycleACR is constituted of two modules: 1) Actor-to-Context Reorganization (A2C-R), which adaptively collects actor features for context feature reorganizations, and 2) Context-to-Actor Enhancement (C2A-E), which dynamically utilizes the reorganized context features for actor feature enhancement. Stacking multiple CycleACR modules is able to effectively capture the high-order relation and efficiently exchange useful information between actors and context. To fully exploit time-dependent and holistic context information, we further design a parallel local and global temporal context modeling branch. The outputs of the two branches are integrated as the final context-enhanced actor feature representations. Finally, we propose a context-aware memory bank for long-term relation modeling. The proposed bank can effectively store actor-related scene context from other clips without additional memory overhead. Compared to existing designs that focus on C2A-E, our CycleACR introduces the core design of A2C-R for more effective relation modeling. This cycle modeling enablesour CycleACR to achieve state-of-the-art performance on two popular action detection datasets: AVA (40.6 mAP) and UCF101-24 (84.7 mAP). We also provide ablation studies and visualizations to show how our cycle actor-context relation modeling improves video action detection 
650 4 |a Journal Article 
700 1 |a Tong, Zhan  |e verfasserin  |4 aut 
700 1 |a Song, Yibing  |e verfasserin  |4 aut 
700 1 |a Wu, Gangshan  |e verfasserin  |4 aut 
700 1 |a Wang, Limin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 01. Okt., Seite 10588-10603  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:01  |g month:10  |g pages:10588-10603 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3595393  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 01  |c 10  |h 10588-10603