|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM390597686 |
| 003 |
DE-627 |
| 005 |
20251023232908.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
250804s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1002/adma.202511877
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1608.xml
|
| 035 |
|
|
|a (DE-627)NLM390597686
|
| 035 |
|
|
|a (NLM)40757920
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Lian, Wenru
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Near-Quantitative Photothermal Conversion in Non-Fluorescent Diradicaloid Organic Molecules for Efficient Solar Energy Harvesting
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 23.10.2025
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
| 520 |
|
|
|a Organic small molecules have emerged as promising photothermal materials for solar energy harvesting due to their structural tunability and diverse optoelectronic properties. However, achieving photothermal conversion efficiencies (PCEs) exceeding 90% in such systems remains a significant challenge, largely limited by residual fluorescence and suboptimal non-radiative decay pathways. Here, a molecular design strategy is reported that combines inherently non-fluorescent diradicaloid cores with electron-donating substituents to facilitate non-radiative decay and enhance PCE. It is demonstrated that the PCE can be effectively tuned from 64.9% (nitro-substituted) to a near-quantitative 94.3% (dimethylamine-substituted). Moreover, the equilibrium temperature of dimethylamine functionalized diradicaloid can be elevated to record breaking 350 °C in organic materials under 1 W cm-2 808 nm laser, and lifted to 103 °C under one sun irradiation when loaded into polyurethane. This exceptional performance is attributed to a small energy gap, strong donor-acceptor interaction, and active molecular motion that together promote efficient vibronic relaxation and internal conversion. Furthermore, these molecules exhibit broadband absorption across 300-2000 nm, enabling a high water evaporation efficiency of 98.52% under one sun and facilitating high-voltage output in solar thermoelectric generators. This work presents a robust design strategy for high-efficiency organic photothermal materials, offering new opportunities for solar-driven thermal energy harvesting and conversion technologies
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a diradicaloid
|
| 650 |
|
4 |
|a organic photothermal materials
|
| 650 |
|
4 |
|a quantitative photothermal conversion
|
| 650 |
|
4 |
|a solar energy harvesting
|
| 650 |
|
4 |
|a water evaporation
|
| 700 |
1 |
|
|a Chen, Hanjiao
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Wang, Xian
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Wang, Zengsong
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Li, Huaqing
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Liu, Siying
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Hu, Xiaoguang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Liu, Xuying
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 37(2025), 42 vom: 21. Okt., Seite e11877
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
| 773 |
1 |
8 |
|g volume:37
|g year:2025
|g number:42
|g day:21
|g month:10
|g pages:e11877
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202511877
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 37
|j 2025
|e 42
|b 21
|c 10
|h e11877
|