BenchQC : A Benchmarking Toolkit for Quantum Computation

Published 2025. This article is a U.S. Government work and is in the public domain in the USA.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 46(2025), 21 vom: 05. Aug., Seite e70202
Auteur principal: Pollard, Nia (Auteur)
Autres auteurs: Choudhary, Kamal
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article benchmarking chemistry materials science quantum computing
LEADER 01000naa a22002652c 4500
001 NLM390572136
003 DE-627
005 20250804232138.0
007 cr uuu---uuuuu
008 250804s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.70202  |2 doi 
028 5 2 |a pubmed25n1520.xml 
035 |a (DE-627)NLM390572136 
035 |a (NLM)40755323 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pollard, Nia  |e verfasserin  |4 aut 
245 1 0 |a BenchQC  |b A Benchmarking Toolkit for Quantum Computation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Published 2025. This article is a U.S. Government work and is in the public domain in the USA. 
520 |a The Variational Quantum Eigensolver (VQE) is a widely studied hybrid classical-quantum algorithm for approximating ground-state energies in molecular and materials systems. This study benchmarks the performance of the VQE for calculating ground-state energies of small aluminum clusters ( Al - $$ {\mathrm{Al}}^{-} $$ , Al 2 $$ {\mathrm{Al}}_2 $$ , and Al 3 - $$ {\mathrm{Al}}_3^{-} $$ ) within a quantum-density functional theory (DFT) embedding framework, systematically varying key parameters: (I) classical optimizers, (II) circuit types, (III) number of repetitions, (IV) simulator types, (V) basis sets, and (VI) noise models. All calculations were performed using quantum simulators to evaluate VQE performance under both idealized and noise-augmented conditions. Our findings demonstrate that certain optimizers converge efficiently, while circuit choice and basis set selection have a marked impact on energy estimates, with higher-level basis sets closely matching classical computation data from Numerical Python Solver (NumPy) and Computational Chemistry Comparison and Benchmark DataBase (CCCBDB). To approximate realistic conditions, we employed IBM noise models to simulate the effects of hardware noise. The results showed close agreement with CCCBDB benchmarks, with percent errors consistently below 0.2%. The results demonstrate that VQE can approximate energy estimates under simulated conditions for small aluminum clusters and highlight the importance of optimizing quantum-DFT parameters to balance computational cost and precision. This work contributes to ongoing efforts to benchmark VQE in practical settings and lays the groundwork for future benchmarking tools for quantum chemistry and materials applications 
650 4 |a Journal Article 
650 4 |a benchmarking 
650 4 |a chemistry 
650 4 |a materials science 
650 4 |a quantum computing 
700 1 |a Choudhary, Kamal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 46(2025), 21 vom: 05. Aug., Seite e70202  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:46  |g year:2025  |g number:21  |g day:05  |g month:08  |g pages:e70202 
856 4 0 |u http://dx.doi.org/10.1002/jcc.70202  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2025  |e 21  |b 05  |c 08  |h e70202