Toward Few-Shot Learning in the Open World : A Review and Beyond

Human intelligence is characterized by our ability to absorb and apply knowledge from the world around us, especially in rapidly acquiring new concepts from minimal examples, underpinned by prior knowledge. Few-shot learning (FSL) aims to mimic this capacity by enabling significant generalizations a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 10420-10440
1. Verfasser: Xue, Hui (VerfasserIn)
Weitere Verfasser: An, Yuexuan, Qin, Yongchun, Li, Wenqian, Wu, Yixin, Che, Yongjuan, Fang, Pengfei, Zhang, Min-Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390493104
003 DE-627
005 20251007231853.0
007 cr uuu---uuuuu
008 250802s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3594686  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM390493104 
035 |a (NLM)40748790 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xue, Hui  |e verfasserin  |4 aut 
245 1 0 |a Toward Few-Shot Learning in the Open World  |b A Review and Beyond 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Human intelligence is characterized by our ability to absorb and apply knowledge from the world around us, especially in rapidly acquiring new concepts from minimal examples, underpinned by prior knowledge. Few-shot learning (FSL) aims to mimic this capacity by enabling significant generalizations and transferability. However, traditional FSL frameworks often rely on assumptions of clean, complete, and static data, conditions that are seldom met in real-world environments. Such assumptions falter in the inherently uncertain, incomplete, and dynamic contexts of the open world. This paper presents a comprehensive review of recent advancements designed to adapt FSL to open-world environments. We categorize existing methods into three distinct types of FSL in the open world: those involving varying instances, varying classes, and varying distributions. Each category is discussed in terms of its specific challenges and methods, as well as its strengths and weaknesses. We standardize experimental settings and metric benchmarks across scenarios and provide a comparative analysis of the performance of various methods. In conclusion, we outline potential future research directions for this evolving field. It is our hope that this review will catalyze further development of effective solutions to these complex challenges, thereby advancing the field of artificial intelligence 
650 4 |a Journal Article 
700 1 |a An, Yuexuan  |e verfasserin  |4 aut 
700 1 |a Qin, Yongchun  |e verfasserin  |4 aut 
700 1 |a Li, Wenqian  |e verfasserin  |4 aut 
700 1 |a Wu, Yixin  |e verfasserin  |4 aut 
700 1 |a Che, Yongjuan  |e verfasserin  |4 aut 
700 1 |a Fang, Pengfei  |e verfasserin  |4 aut 
700 1 |a Zhang, Min-Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 01. Okt., Seite 10420-10440  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:01  |g month:10  |g pages:10420-10440 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3594686  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 01  |c 10  |h 10420-10440