Deep Learning-Based Point Cloud Compression : An In-Depth Survey and Benchmark

With the maturity of 3D capture technology, the explosive growth of point cloud data has burdened the storage and transmission process. Traditional hybrid point cloud compression (PCC) tools relying on handcrafted priors have limited compression performance and are increasingly weak in addressing th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 06. Okt., Seite 10731-10752
1. Verfasser: Gao, Wei (VerfasserIn)
Weitere Verfasser: Xie, Liang, Fan, Songlin, Li, Ge, Liu, Shan, Gao, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390418234
003 DE-627
005 20251007231852.0
007 cr uuu---uuuuu
008 250801s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3594355  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM390418234 
035 |a (NLM)40742848 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Wei  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning-Based Point Cloud Compression  |b An In-Depth Survey and Benchmark 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the maturity of 3D capture technology, the explosive growth of point cloud data has burdened the storage and transmission process. Traditional hybrid point cloud compression (PCC) tools relying on handcrafted priors have limited compression performance and are increasingly weak in addressing the burden induced by data growth. Recently, deep learning-based PCC methods have been introduced to continue to push the PCC performance boundary. With the thriving of deep PCC, the community urgently demands a systematic overview to conclude the past progress and present future research directions. In this paper, we have a detailed review that covers popular point cloud datasets, algorithm evolution, benchmarking analysis, and future trends. Concretely, we first introduce several widely-used PCC datasets according to their major properties. Then the algorithm evolution of existing studies on deep PCC, including lossy ones and lossless ones proposed for various point cloud types, is reviewed. Apart from academic studies, we also investigate the development of relevant international standards (i.e., MPEG standards and JPEG standards). To help have an in-depth understanding of the advance of deep PCC, we select a representative set of methods and conduct extensive experiments on multiple datasets. Comprehensive benchmarking comparisons and analysis reveal the pros and cons of previous methods. Finally, based on the profound analysis, we highlight the challenges and future trends of deep learning-based PCC, paving the way for further study 
650 4 |a Journal Article 
700 1 |a Xie, Liang  |e verfasserin  |4 aut 
700 1 |a Fan, Songlin  |e verfasserin  |4 aut 
700 1 |a Li, Ge  |e verfasserin  |4 aut 
700 1 |a Liu, Shan  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 06. Okt., Seite 10731-10752  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:06  |g month:10  |g pages:10731-10752 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3594355  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 06  |c 10  |h 10731-10752