Lithium Lactate Modified Polyolefin Separators for High-Performance Lithium Metal Batteries

As the fast-paced evolution of high energy density rechargeable batteries continues, the lower lithium ion (Li+) mobility of polyolefin separators has become a major bottleneck in the adoption of lithium metal electrodes. With undesired Li+-anion solvated structures in the electrolyte, previous sepa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 41(2025), 31 vom: 12. Aug., Seite 20555-20566
1. Verfasser: Wang, Lulu (VerfasserIn)
Weitere Verfasser: Yan, Lingxiao, Wang, Hongyan, Li, Chenying, Xue, Song
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390346292
003 DE-627
005 20250812232149.0
007 cr uuu---uuuuu
008 250731s2025 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5c01838  |2 doi 
028 5 2 |a pubmed25n1528.xml 
035 |a (DE-627)NLM390346292 
035 |a (NLM)40739740 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Lulu  |e verfasserin  |4 aut 
245 1 0 |a Lithium Lactate Modified Polyolefin Separators for High-Performance Lithium Metal Batteries 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As the fast-paced evolution of high energy density rechargeable batteries continues, the lower lithium ion (Li+) mobility of polyolefin separators has become a major bottleneck in the adoption of lithium metal electrodes. With undesired Li+-anion solvated structures in the electrolyte, previous separator modification strategies are generally confronted with the dilemma of concurrently enhancing the Li+ transference number and reducing the anion transference number, as well as overall conductivity. Here, a strategy are reported to prepare high-performance separators with polyolefin separators coated by lactic acid lithium with the assistance of dopamine hydrochloride and triethanolamine, which can achieve a stable LMB operation at 1 C for 600 cycles with a capacity retention of 92%, substantially outperforming pristine PP separator. The ultrathin polar modification layer on the surface of the PP separator renders optimal electrolyte wettability and notable electrolyte uptake. The electrostatically repellent nature of the negatively charged -COO- moieties on the ion permeable layers can effectively increase the Li+ transference number without sacrificing the overall ion conductivity. The ionic conductivity of the DL2-PP separator reaches 1.2 mS cm-1, and the lithium-ion mobility is 0.68, enabling a rapid, selective and uniform Li+ flux through the separator. DFT calculations are utilized to analyze the underlying mechanism. Such features can facilitate uniform nucleation/deposition of Li and mitigate Li dendrite growth, leading to enhanced battery durability and safety 
650 4 |a Journal Article 
700 1 |a Yan, Lingxiao  |e verfasserin  |4 aut 
700 1 |a Wang, Hongyan  |e verfasserin  |4 aut 
700 1 |a Li, Chenying  |e verfasserin  |4 aut 
700 1 |a Xue, Song  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 41(2025), 31 vom: 12. Aug., Seite 20555-20566  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:41  |g year:2025  |g number:31  |g day:12  |g month:08  |g pages:20555-20566 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5c01838  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 41  |j 2025  |e 31  |b 12  |c 08  |h 20555-20566