Afforestation Surpasses Abandonment in the Recovery of Post-Agricultural Soil Organic Carbon in China as Estimated by Machine Learning Models

© 2025 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 31(2025), 8 vom: 30. Juli, Seite e70383
1. Verfasser: Liu, Tao (VerfasserIn)
Weitere Verfasser: Yu, Le, Chen, Jizhen, Qi, Wenchao, Wu, Hui, Peng, Dailiang, Chen, Xin, Zhou, Yuyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article afforestation china cropland abandonment machine learning model soil organic carbon Soil Carbon 7440-44-0
LEADER 01000naa a22002652c 4500
001 NLM390346195
003 DE-627
005 20250731233808.0
007 cr uuu---uuuuu
008 250731s2025 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.70383  |2 doi 
028 5 2 |a pubmed25n1514.xml 
035 |a (DE-627)NLM390346195 
035 |a (NLM)40739724 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Tao  |e verfasserin  |4 aut 
245 1 0 |a Afforestation Surpasses Abandonment in the Recovery of Post-Agricultural Soil Organic Carbon in China as Estimated by Machine Learning Models 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2025 
500 |a Date Revised 31.07.2025 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2025 John Wiley & Sons Ltd. 
520 |a The surface soil organic carbon (SOC) dynamics typically follow a trend of initial loss followed by subsequent accumulation after cropland abandonment. However, the timing of SOC stock increase (referred to as the threshold in this study) remains insufficiently explored in spatial terms. While afforestation incentives are considered an effective nature-based strategy, the benefits of SOC recovery still require further investigation. Here, we integrated 3502 SOC observation datasets from 211 publications, 41 spatially explicit environmental covariates, and interpretable machine learning models to simulate early-stage SOC dynamics at the pixel level across China's abandoned cropland. We then identified the threshold and quantified surface SOC stock loss (0-30 cm). Our simulation results show that the SOC threshold of cropland abandonment is 3.77 ± 0.91 (standard deviation) years, during which 3.13 ± 0.52 Mg C ha-1 of SOC is lost. Afforestation has the potential to advance this threshold by 47.7% (approximately 1.97 ± 1.36 years), though with significant spatial variation. Further analysis indicates that afforestation also has the potential to mitigate SOC loss by 1.75 ± 0.50 Mg C ha-1 (approximately 10.55 ± 3.01 Tg C across all of China's abandoned cropland) during the initial stage of the post-agricultural period. Our findings highlight afforestation incentives as an effective strategy for accelerating SOC recovery and preventing SOC loss in the post-agricultural period 
650 4 |a Journal Article 
650 4 |a afforestation 
650 4 |a china 
650 4 |a cropland abandonment 
650 4 |a machine learning model 
650 4 |a soil organic carbon 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Yu, Le  |e verfasserin  |4 aut 
700 1 |a Chen, Jizhen  |e verfasserin  |4 aut 
700 1 |a Qi, Wenchao  |e verfasserin  |4 aut 
700 1 |a Wu, Hui  |e verfasserin  |4 aut 
700 1 |a Peng, Dailiang  |e verfasserin  |4 aut 
700 1 |a Chen, Xin  |e verfasserin  |4 aut 
700 1 |a Zhou, Yuyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 31(2025), 8 vom: 30. Juli, Seite e70383  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:8  |g day:30  |g month:07  |g pages:e70383 
856 4 0 |u http://dx.doi.org/10.1111/gcb.70383  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2025  |e 8  |b 30  |c 07  |h e70383