Graph Spiking Attention Network : Sparsity, Efficiency and Robustness

Existing Graph Attention Networks (GATs) generally adopt the self-attention mechanism to learn graph edge attention, which usually return dense attention coefficients over all neighbors and thus are prone to be sensitive to graph edge noises. To overcome this problem, sparse GATs are desirable and h...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 10862-10869
Auteur principal: Wang, Beibei (Auteur)
Autres auteurs: Jiang, Bo, Tang, Jin, Bai, Lu, Luo, Bin
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article