Nanometer Resolution Structure-Emission Correlation of Individual Quantum Emitters via Enhanced Cathodoluminescence in Twisted Hexagonal Boron Nitride

© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 41 vom: 25. Okt., Seite e01611
1. Verfasser: Hou, Hanyu (VerfasserIn)
Weitere Verfasser: Hua, Muchuan, Kolluru, Venkata Surya Chaitanya, Chen, Wei-Ying, Yin, Kaijun, Tripathi, Pinak, Chan, Maria K Y, Diroll, Benjamin T, Gage, Thomas E, Zuo, Jian-Min, Wen, Jianguo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D material atomic structure cathodoluminescence hexagonal boron nitride quantum emitter quantum information science single photon emitter twisted interface
Beschreibung
Zusammenfassung:© 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Understanding the atomic structure of quantum emitters, often originating from point defects or impuritie, is essential for designing and optimizing materials for quantum technologies such as quantum computing, communication, and sensing. Despite the availability of atomic-resolution scanning transmission electron microscopy and nanoscale cathodoluminescence microscopy, experimentally determining the atomic structure of individual emitters is challenging due to the conflicting needs for thick samples to generate strong cathodoluminescence signals and thin samples for structural analysis. To overcome this challenge, significantly enhanced cathodoluminescence at twisted interfaces is leveraged to achieve sub-nanometer localization precision for the first time in mapping individual quantum emitters in carbon-implanted hexagonal boron nitride. This unprecedent spatial sensitivity, together with correlative electron energy loss spectroscopy quantitative scanning transmission electron microscopy imaging, and first principles density functional theory calculations, enables the identification of the atomic structure of the 440 nm blue emitter in hexagonal boron nitride as a substituted vertical carbon dimer. Building on the atomic structure insights, nanoscale spatially precise creation of blue emitters is demonstrated by electron beam irradiation of carbon-coated hexagonal boron nitride. This advancement in correlating atomic structures with optical properties lays the foundation for a deeper understanding and precise engineering of quantum emitters, significantly advancing the development of cutting-edge quantum information technologies
Beschreibung:Date Revised 19.10.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202501611