Spatiotemporal evolution, driving factors and generation patterns of construction and demolition waste : A multi-scale analysis based on provinces and cities in China

Copyright © 2025 Elsevier Ltd. All rights reserved.

Détails bibliographiques
Publié dans:Waste management (New York, N.Y.). - 1999. - 205(2025) vom: 24. Aug., Seite 115026
Auteur principal: Chen, Yiwei (Auteur)
Autres auteurs: Xie, Qiu, Feng, Yingbin, Huang, Yuxin, Yang, Yi, Zhang, Tong
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Waste management (New York, N.Y.)
Sujets:Journal Article Construction and demolition waste generation Machine learning model Multi-scale Spatial econometric model Spatiotemporal evolution
LEADER 01000caa a22002652c 4500
001 NLM390052051
003 DE-627
005 20250811232025.0
007 cr uuu---uuuuu
008 250725s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2025.115026  |2 doi 
028 5 2 |a pubmed25n1527.xml 
035 |a (DE-627)NLM390052051 
035 |a (NLM)40706304 
035 |a (PII)S0956-053X(25)00437-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yiwei  |e verfasserin  |4 aut 
245 1 0 |a Spatiotemporal evolution, driving factors and generation patterns of construction and demolition waste  |b A multi-scale analysis based on provinces and cities in China 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.08.2025 
500 |a Date Revised 10.08.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2025 Elsevier Ltd. All rights reserved. 
520 |a Construction and demolition waste generation (CDWG) reduction is a key issue in urban waste management. The complex distribution and regional disparities of CDWG exacerbate the challenges of reduction. Existing research mainly focuses on macro-level national or regional scales, neglecting multi-scale interactions and detailed analysis at city scale. To address this gap, this study proposes a multi-scale STDP framework to systematically analyze the spatiotemporal evolution, driving mechanisms, and generation patterns of CDWG. Using China as a case and applying spatial econometrics and machine learning models, the main findings are as follows: (1) CDWG distribution consistent with Hu-Line, and the gap between two sides of the line gradually widened; (2) CDWG consistently shows spatial autocorrelation, with an "increase-decrease-recovery" fluctuation in aggregation, and city-scale correlation is always lower than at provincial scale; (3) Construction industry development and neighborhood influence are key drivers at provincial scale, while real estate market activity, housing demand, and urban economic level are major drivers at city level. Additionally, CDWG generation patterns for 31 provinces and 351 cities in China are identified, providing direct insights for governmental reduction management. The main theoretical contribution is to reveal that CDWG is driven by multi-scale spatial coupling, and its generation mechanism is the interaction of multiple factors at different geographical scales. The innovation lies in: (1) presenting the finer-grained evolution characteristics and driving factors of CDWG at city scales for the first time and (2) introducing a quantitative indicator to measure the impact of spatial spillover effects from neighboring regions on CDWG 
650 4 |a Journal Article 
650 4 |a Construction and demolition waste generation 
650 4 |a Machine learning model 
650 4 |a Multi-scale 
650 4 |a Spatial econometric model 
650 4 |a Spatiotemporal evolution 
700 1 |a Xie, Qiu  |e verfasserin  |4 aut 
700 1 |a Feng, Yingbin  |e verfasserin  |4 aut 
700 1 |a Huang, Yuxin  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
700 1 |a Zhang, Tong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 205(2025) vom: 24. Aug., Seite 115026  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:205  |g year:2025  |g day:24  |g month:08  |g pages:115026 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2025.115026  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 205  |j 2025  |b 24  |c 08  |h 115026