Giant Flexoelectric-Like Response via Macroscopic Symmetry Design

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 18. Juli, Seite e01160
1. Verfasser: Zhang, Yongkang (VerfasserIn)
Weitere Verfasser: Yan, Zhaonan, Liu, Shuhai, Qin, Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article flexoelectric effect flexoelectric‐like response giant flexoelectricity macroscopic symmetry design piezoelectric bimorph cantilever
LEADER 01000naa a22002652c 4500
001 NLM389665770
003 DE-627
005 20250718233222.0
007 cr uuu---uuuuu
008 250718s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202501160  |2 doi 
028 5 2 |a pubmed25n1500.xml 
035 |a (DE-627)NLM389665770 
035 |a (NLM)40679047 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yongkang  |e verfasserin  |4 aut 
245 1 0 |a Giant Flexoelectric-Like Response via Macroscopic Symmetry Design 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.07.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Flexoelectricity is enabled by symmetry in all materials. However, flexoelectric material application is limited by the normally low charge density produced in bulk materials. In this study, a universal strategy involving a macroscopic symmetry design is proposed to enhance the flexoelectricity. Through theoretical derivation, flexoelectricity can be improved by designing the macroscopic symmetry of the material parameter distribution (including the piezoelectric coefficients) and device structure. As a demonstration, typical piezoelectric bimorph cantilevers (PBCs; Ag/PZT-5H/Ag/PZT-5H/Ag) are constructed with the two PZT-5H layers arranged in "head-to-tail" polarization (mirror symmetry) and "tail-to-tail" polarization (centrosymmetry), to design the macroscopic symmetry and thus to tune the flexoelectricity. The theoretical predictions and experimental results show that the tail-to-tail PBC achieves a flexoelectric coefficient (1.47 × 106 nC m-1), 20 times higher than that of the head-to-tail PBC (7 × 104 nC m-1) and conventional piezoelectric cantilevers (Ag/PZT-5H/Ag). Furthermore, by introducing spaced-interdigitated electrodes, the macroscopic symmetry of the head-to-tail PBC can be transformed from mirror to centrosymmetry, yielding a giant flexoelectric coefficient of 2.53 × 106 nC m-1. This strategy offers a dimension beyond traditional approaches for understanding and enhancing flexoelectricity, paving the way for its practical application 
650 4 |a Journal Article 
650 4 |a flexoelectric effect 
650 4 |a flexoelectric‐like response 
650 4 |a giant flexoelectricity 
650 4 |a macroscopic symmetry design 
650 4 |a piezoelectric bimorph cantilever 
700 1 |a Yan, Zhaonan  |e verfasserin  |4 aut 
700 1 |a Liu, Shuhai  |e verfasserin  |4 aut 
700 1 |a Qin, Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 18. Juli, Seite e01160  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:18  |g month:07  |g pages:e01160 
856 4 0 |u http://dx.doi.org/10.1002/adma.202501160  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 18  |c 07  |h e01160