Subsurface Electron Trap Enabled Long-Cycling Oxalate-Based Li-CO2 Battery

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 39 vom: 01. Okt., Seite e2507871
Auteur principal: Liu, Yuchun (Auteur)
Autres auteurs: Liu, Tianqi, Wang, Xinyun, Zhang, Jing, Zhai, Xingwu, Wei, Tianchen, Shi, Qianqi, Lu, Chengjie, Yan, Huan, Xia, Yujian, Cheng, Weiren, Zhou, Min
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Li‐CO2 battery electron trap energy efficiency lithium oxalate subsurface atomic layer
LEADER 01000caa a22002652c 4500
001 NLM389312657
003 DE-627
005 20251010232022.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202507871  |2 doi 
028 5 2 |a pubmed25n1594.xml 
035 |a (DE-627)NLM389312657 
035 |a (NLM)40653966 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yuchun  |e verfasserin  |4 aut 
245 1 0 |a Subsurface Electron Trap Enabled Long-Cycling Oxalate-Based Li-CO2 Battery 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Li-CO₂ batteries promise ultrahigh theoretical energy densities but face efficiency limitations owing to the sluggish decomposition of stable Li2CO3. Redirecting the redox pathway toward Li2C2O4 overcomes this challenge, but its metastability leads to facile conversion to Li2CO3 during discharge. Herein, subsurface electronic confinement is engineered in Mo-based catalysts, leveraging electron-deficient boron (B) as electron traps in the subsurface atomic layers to tailor their interfacial electronic landscapes. This design elevates the Mo d-band and intensifies the hybridization between the Mo d-orbitals and O p-orbitals of oxalate. Strengthening the Mo-O interaction stabilizes Li2C2O4 against decomposition. The highly reversible and stable redox chemistry enabled by MoB results in an exceptional cycling stability and energy efficiency across a wide temperature range, with an expanded practical viability. At 70 µA cm-2, the MoB-based battery is cycled for >1400 h with a high energy efficiency of >85%. The energy efficiency even remains at >90% for ≈150 h at a high temperature (90 °C). This study pioneers a material design framework for use in stabilizing metastable products within Li-CO2 batteries, advancing their applicabilities in extreme environments, such as deep-earth exploration, by revealing the role of subsurface charge redistribution in steering reaction pathways 
650 4 |a Journal Article 
650 4 |a Li‐CO2 battery 
650 4 |a electron trap 
650 4 |a energy efficiency 
650 4 |a lithium oxalate 
650 4 |a subsurface atomic layer 
700 1 |a Liu, Tianqi  |e verfasserin  |4 aut 
700 1 |a Wang, Xinyun  |e verfasserin  |4 aut 
700 1 |a Zhang, Jing  |e verfasserin  |4 aut 
700 1 |a Zhai, Xingwu  |e verfasserin  |4 aut 
700 1 |a Wei, Tianchen  |e verfasserin  |4 aut 
700 1 |a Shi, Qianqi  |e verfasserin  |4 aut 
700 1 |a Lu, Chengjie  |e verfasserin  |4 aut 
700 1 |a Yan, Huan  |e verfasserin  |4 aut 
700 1 |a Xia, Yujian  |e verfasserin  |4 aut 
700 1 |a Cheng, Weiren  |e verfasserin  |4 aut 
700 1 |a Zhou, Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 39 vom: 01. Okt., Seite e2507871  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:39  |g day:01  |g month:10  |g pages:e2507871 
856 4 0 |u http://dx.doi.org/10.1002/adma.202507871  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 39  |b 01  |c 10  |h e2507871