Subsurface Electron Trap Enabled Long-Cycling Oxalate-Based Li-CO2 Battery

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 39 vom: 01. Okt., Seite e2507871
1. Verfasser: Liu, Yuchun (VerfasserIn)
Weitere Verfasser: Liu, Tianqi, Wang, Xinyun, Zhang, Jing, Zhai, Xingwu, Wei, Tianchen, Shi, Qianqi, Lu, Chengjie, Yan, Huan, Xia, Yujian, Cheng, Weiren, Zhou, Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li‐CO2 battery electron trap energy efficiency lithium oxalate subsurface atomic layer
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Li-CO₂ batteries promise ultrahigh theoretical energy densities but face efficiency limitations owing to the sluggish decomposition of stable Li2CO3. Redirecting the redox pathway toward Li2C2O4 overcomes this challenge, but its metastability leads to facile conversion to Li2CO3 during discharge. Herein, subsurface electronic confinement is engineered in Mo-based catalysts, leveraging electron-deficient boron (B) as electron traps in the subsurface atomic layers to tailor their interfacial electronic landscapes. This design elevates the Mo d-band and intensifies the hybridization between the Mo d-orbitals and O p-orbitals of oxalate. Strengthening the Mo-O interaction stabilizes Li2C2O4 against decomposition. The highly reversible and stable redox chemistry enabled by MoB results in an exceptional cycling stability and energy efficiency across a wide temperature range, with an expanded practical viability. At 70 µA cm-2, the MoB-based battery is cycled for >1400 h with a high energy efficiency of >85%. The energy efficiency even remains at >90% for ≈150 h at a high temperature (90 °C). This study pioneers a material design framework for use in stabilizing metastable products within Li-CO2 batteries, advancing their applicabilities in extreme environments, such as deep-earth exploration, by revealing the role of subsurface charge redistribution in steering reaction pathways
Beschreibung:Date Revised 08.10.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202507871