Prediction of NOx emissions from co-disposal of municipal solid waste and sludge using a GA-LSTM neural network

Accurately predicting NOx emissions is crucial for effectively controlling pollution during the incineration of municipal solid waste (MSW). This study focuses on the application of genetic algorithm (GA) and long short-term memory (LSTM) neural networks in modeling the relationship between operatin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 46(2025), 22 vom: 09. Sept., Seite 4475-4492
1. Verfasser: Qiu, Bo (VerfasserIn)
Weitere Verfasser: Yuan, Quan, Niu, Yadong, Mo, Huangxing, Sun, Chao, Feng, Jiezhao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article LSTM MSW incineration NOx emission co-combustion sludge Sewage Air Pollutants Solid Waste Nitrogen Oxides
LEADER 01000caa a22002652c 4500
001 NLM389042625
003 DE-627
005 20250909232029.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2025.2507386  |2 doi 
028 5 2 |a pubmed25n1562.xml 
035 |a (DE-627)NLM389042625 
035 |a (NLM)40419282 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiu, Bo  |e verfasserin  |4 aut 
245 1 0 |a Prediction of NOx emissions from co-disposal of municipal solid waste and sludge using a GA-LSTM neural network 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2025 
500 |a Date Revised 09.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Accurately predicting NOx emissions is crucial for effectively controlling pollution during the incineration of municipal solid waste (MSW). This study focuses on the application of genetic algorithm (GA) and long short-term memory (LSTM) neural networks in modeling the relationship between operating parameters and NOx emissions for an 850 t/d MSW incinerator. After data cleaning, principal component analysis (PCA) was used to eliminate correlations among input variables and GA was applied to optimize the hyperparameters of the LSTM model which was compiled with the Adam optimizer. Lastly, a NOx emission trend prediction model with practical engineering value was proposed, specifically considering the co-incineration of sludge and waste. The model was thoroughly validated using both actual operational data from the waste incineration process and numerical simulation results. Analysis on prediction performance indicates that even the GA-LSTM model maintains a strong capability for predicting NOx emissions for MSW incinerator, even when handling large amounts of high-dimensional data 
650 4 |a Journal Article 
650 4 |a LSTM 
650 4 |a MSW incineration 
650 4 |a NOx emission 
650 4 |a co-combustion 
650 4 |a sludge 
650 7 |a Sewage  |2 NLM 
650 7 |a Air Pollutants  |2 NLM 
650 7 |a Solid Waste  |2 NLM 
650 7 |a Nitrogen Oxides  |2 NLM 
700 1 |a Yuan, Quan  |e verfasserin  |4 aut 
700 1 |a Niu, Yadong  |e verfasserin  |4 aut 
700 1 |a Mo, Huangxing  |e verfasserin  |4 aut 
700 1 |a Sun, Chao  |e verfasserin  |4 aut 
700 1 |a Feng, Jiezhao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g 46(2025), 22 vom: 09. Sept., Seite 4475-4492  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnas 
773 1 8 |g volume:46  |g year:2025  |g number:22  |g day:09  |g month:09  |g pages:4475-4492 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2025.2507386  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2025  |e 22  |b 09  |c 09  |h 4475-4492