Electronic Structure and Vibrational Properties of Indenotetracene-Based Crystal

© 2025 The Author(s). Journal of Computational Chemistry published by Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 46(2025), 14 vom: 30. Mai, Seite e70141
Auteur principal: Coppola, Federico (Auteur)
Autres auteurs: Carfora, Raoul, Rega, Nadia
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article DFT and TD‐DFT calculations diarylindenotetracene crystal electronic and vibrational properties intermolecular interactions organic semiconductors
LEADER 01000naa a22002652c 4500
001 NLM388963441
003 DE-627
005 20250714113756.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.70141  |2 doi 
028 5 2 |a pubmed25n1417.xml 
035 |a (DE-627)NLM388963441 
035 |a (NLM)40411264 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Coppola, Federico  |e verfasserin  |4 aut 
245 1 0 |a Electronic Structure and Vibrational Properties of Indenotetracene-Based Crystal 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.05.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 The Author(s). Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a Asymmetrically substituted indenotetracene crystals are promising nonfullerene electron transport materials for organic photovoltaics, offering potential improvements in efficiency and stability. In this work, we present a first-principle investigation of the electronic and vibrational properties of a diarylindenotetracene system functionalized with two methoxy groups (hereafter DimethoxyASI). Single-crystal X-ray diffraction analysis [reported in J. Org. Chem. 2018, 83, 4, 1828] reveals a monoclinic P2 1 / c $$ {\mathrm{P}2}_1/\mathrm{c} $$ structure with an interplanar distance of 3.76 Å, providing insight into the molecular packing and intermolecular interactions that govern the solid-state organization. Notably, for the first time, in this work we identify two distinct dimeric species within the crystalline lattice by a structural and electronic analysis, each exhibiting different intermolecular arrangements that significantly influence both the electronic structure and vibrational properties of the material. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations provide insight into the molecular packing, electronic states, and vibrational characteristics of the crystal. The theoretical absorption spectrum, obtained from TDDFT calculations, features three main electronic transitions centered at 530, 360, and 275 nm, displaying a mixed character of localized excitations and charge-transfer contributions. The vibrational properties, investigated through phonon density of states calculations at the DFT level, highlight well-defined spectral features. While most vibrational modes remain consistent between monomeric and dimeric configurations, significant deviations emerge in the low-frequency region, where intermolecular interactions and crystal packing effects play a crucial role. Furthermore, the two dimeric species exhibit distinct electronic properties beyond their geometric differences. A key distinguishing factor is the transition electric dipole moments (TEDMs), which governs the probability and polarization of electronic transitions. Our analysis reveals that the TEDMs magnitude and orientation vary significantly between the two dimeric species, suggesting that they may interact differently with polarized light. These differences provide new insight into the role of molecular aggregation in shaping the optical response of organic semiconductors and highlight the impact of polymorphism on their electronic properties. Overall, this study underscores the intricate relationship between molecular packing, electronic structure, and vibrational properties in indenotetracene-based materials, contributing to a deeper understanding of their potential applications in optoelectronic devices 
650 4 |a Journal Article 
650 4 |a DFT and TD‐DFT calculations 
650 4 |a diarylindenotetracene crystal 
650 4 |a electronic and vibrational properties 
650 4 |a intermolecular interactions 
650 4 |a organic semiconductors 
700 1 |a Carfora, Raoul  |e verfasserin  |4 aut 
700 1 |a Rega, Nadia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 46(2025), 14 vom: 30. Mai, Seite e70141  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:46  |g year:2025  |g number:14  |g day:30  |g month:05  |g pages:e70141 
856 4 0 |u http://dx.doi.org/10.1002/jcc.70141  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2025  |e 14  |b 30  |c 05  |h e70141