FreeFusion : Infrared and Visible Image Fusion via Cross Reconstruction Learning

Existing fusion methods empirically design elaborate fusion losses to retain the specific features from source images. Since image fusion has no ground truth, the hand-crafted losses may not make the fused images cover all the vital features, and then affect the performance of the high-level tasks....

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 9 vom: 01. Aug., Seite 8040-8056
Auteur principal: Zhao, Wenda (Auteur)
Autres auteurs: Cui, Hengshuai, Wang, Haipeng, He, You, Lu, Huchuan
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM388877499
003 DE-627
005 20250807232040.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3572599  |2 doi 
028 5 2 |a pubmed25n1523.xml 
035 |a (DE-627)NLM388877499 
035 |a (NLM)40402712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Wenda  |e verfasserin  |4 aut 
245 1 0 |a FreeFusion  |b Infrared and Visible Image Fusion via Cross Reconstruction Learning 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing fusion methods empirically design elaborate fusion losses to retain the specific features from source images. Since image fusion has no ground truth, the hand-crafted losses may not make the fused images cover all the vital features, and then affect the performance of the high-level tasks. Here, there are two main challenges: domain discrepancy among source images and semantic mismatch at different-level tasks. This paper proposes an infrared and visible image fusion via cross reconstruction learning, which doesn't using any hand-crafted fusion losses, but prompts the network to adaptively fuse complementary information of source images. Firstly, we design a cross reconstruction learning model that decouples the fusion features to reconstruct another-modality source image. Thus, the fusion network is forced to learn the domain-adaptive representations of two modal features, which enables their domain alignment in a latent space. Secondly, we propose a dynamic interactive fusion strategy that builds a correlation matrix between fusion features and object semantic features to overcome the semantic mismatch. Further, we enhance the strong correlation features and suppress the weak correlation features to improve the interactive ability. Extensive experiments on three datasets demonstrate the superior fusion performance compared to the state-of-the-art methods, concurrently facilitating the segmentation accuracy 
650 4 |a Journal Article 
700 1 |a Cui, Hengshuai  |e verfasserin  |4 aut 
700 1 |a Wang, Haipeng  |e verfasserin  |4 aut 
700 1 |a He, You  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 9 vom: 01. Aug., Seite 8040-8056  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:9  |g day:01  |g month:08  |g pages:8040-8056 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3572599  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 9  |b 01  |c 08  |h 8040-8056