Polymer Membrane Cavities Tuned by a Removable Inorganic-Phase Additive for Enhanced CO2 Separation

Polyether block amide (Pebax) is a commercially available polymer that has gained attention for capturing CO2 from flue gas. However, its relatively low permeance and CO2/N2 selectivity limit its large-scale industrial applications. Herein, we proposed an approach to adjust the interchain cavities a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - (2025) vom: 22. Mai
1. Verfasser: Jia, Muyan (VerfasserIn)
Weitere Verfasser: Zhang, Yongan, Wang, Zhenggong, Zhang, Feng, Jin, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Polyether block amide (Pebax) is a commercially available polymer that has gained attention for capturing CO2 from flue gas. However, its relatively low permeance and CO2/N2 selectivity limit its large-scale industrial applications. Herein, we proposed an approach to adjust the interchain cavities and improve the permeance of the Pebax membrane by adding a water-soluble additive, ammonium carbonate (AC), into the Pebax polymer, aiming to form removable inorganic phases in the Pebax membrane. A series of Pebax membranes with varying concentrations of AC content were fabricated via a spin-coating process. The AC was decomposed by subsequent thermal treatment, thus creating subnanometer pores in the Pebax membrane substrate while preserving the membrane's integrity. The optimized Pebax-AC membranes achieved a CO2 permeance of 111 GPU and a CO2/N2 selectivity of 74, showing increments of 68% and 37% in comparison with pure Pebax membranes. Our results indicate that incorporating removable inorganic phases is a promising strategy for advancing membrane-based CO2 capture
Beschreibung:Date Revised 22.05.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c05297