Moisture-Microbial Interaction Amplifies N2O Emission Hot Moments Under Deepened Snow in Grasslands

© 2025 John Wiley & Sons Ltd.

Détails bibliographiques
Publié dans:Global change biology. - 1999. - 31(2025), 5 vom: 21. Mai, Seite e70254
Auteur principal: Luo, Jie (Auteur)
Autres auteurs: Peng, Yong, Jia, Zhou, Wu, Yuntao, Gao, Yuxuan, Jalaid, Nairsag, Zhang, Xingming, Ge, Heng, Qing, Bowen, Chen, Hongyi, Zhan, Yanxin, Li, Ping, Liu, Lingli
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Global change biology
Sujets:Journal Article climate change freeze–thaw period grassland ecosystems microbial function nitrous oxide winter snow cover Nitrous Oxide K50XQU1029 Soil plus... Water 059QF0KO0R
LEADER 01000naa a22002652c 4500
001 NLM388800933
003 DE-627
005 20250714105730.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.70254  |2 doi 
028 5 2 |a pubmed25n1413.xml 
035 |a (DE-627)NLM388800933 
035 |a (NLM)40395021 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Jie  |e verfasserin  |4 aut 
245 1 0 |a Moisture-Microbial Interaction Amplifies N2O Emission Hot Moments Under Deepened Snow in Grasslands 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2025 
500 |a Date Revised 21.05.2025 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2025 John Wiley & Sons Ltd. 
520 |a Freeze-thaw-induced N2O pulses could account for nearly half of annual N2O fluxes in cold climates, but their episodic nature, sensitivity to snow cover dynamics, and the challenges of cold-season monitoring complicate their accurate estimation and representation in global models. To address these challenges, we combined in situ automated high-frequency flux measurements with cross-ecoregion soil core incubations to investigate the mechanisms driving freeze-thaw-induced N2O emissions. We found that deepened snow significantly amplified freeze-thaw N2O pulses, with these ~50-day episodes contributing over 50% of annual fluxes. Additionally, freeze-thaw-induced N2O pulses exhibited significant spatial heterogeneity, ranging from 3.4 to 1184.1 μg N m-2 h-1 depending on site conditions. Despite significant spatiotemporal variation, our results indicated that 68%-86% of this variation can be explained by shifts in controlling factors: from water-filled pore space (WFPS), which drove anaerobic conditions, to microbial constraints as snow depth increases. Below 43% WFPS, soil moisture was the overwhelmingly dominant driver of emissions; between 43% and 66% WFPS, moisture and microbial attributes (including denitrifying gene abundance, nitrogen enzyme kinetics, and microbial biomass) jointly triggered N2O emissions pulses; above 66% WFPS, microbial attributes, particularly nitrogen enzyme kinetics, prevailed. These findings suggested that maintaining higher soil moisture served as a trigger for activating microbial activity, particularly enhancing nitrogen cycling. Furthermore, we showed that hotspots of freeze-thaw-induced N2O emissions were linked to high root production and microbial activity in cold and humid grasslands. Overall, our study highlighted the hierarchical control of WFPS and microbial processes in driving freeze-thaw-induced N2O emission pulses. The easily measurable WFPS and microbial attributes predictable from plant and soil properties could forecast the magnitude and spatial distribution of N2O emission "hot moments" under changing climate. Integrating these hot moments, particularly the dynamics of WFPS, into process-based models could refine N2O emission modeling and enhance the accuracy of global N2O budget prediction 
650 4 |a Journal Article 
650 4 |a climate change 
650 4 |a freeze–thaw period 
650 4 |a grassland ecosystems 
650 4 |a microbial function 
650 4 |a nitrous oxide 
650 4 |a winter snow cover 
650 7 |a Nitrous Oxide  |2 NLM 
650 7 |a K50XQU1029  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Peng, Yong  |e verfasserin  |4 aut 
700 1 |a Jia, Zhou  |e verfasserin  |4 aut 
700 1 |a Wu, Yuntao  |e verfasserin  |4 aut 
700 1 |a Gao, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Jalaid, Nairsag  |e verfasserin  |4 aut 
700 1 |a Zhang, Xingming  |e verfasserin  |4 aut 
700 1 |a Ge, Heng  |e verfasserin  |4 aut 
700 1 |a Qing, Bowen  |e verfasserin  |4 aut 
700 1 |a Chen, Hongyi  |e verfasserin  |4 aut 
700 1 |a Zhan, Yanxin  |e verfasserin  |4 aut 
700 1 |a Li, Ping  |e verfasserin  |4 aut 
700 1 |a Liu, Lingli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 31(2025), 5 vom: 21. Mai, Seite e70254  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:5  |g day:21  |g month:05  |g pages:e70254 
856 4 0 |u http://dx.doi.org/10.1111/gcb.70254  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2025  |e 5  |b 21  |c 05  |h e70254