Contrastive Learning via Variational Information Bottleneck

Recent advances in self-supervised learning have witnessed great achievements, especially with the introduction of contrastive learning, where the goal is to maximize the mutual information between different augmentations of the same image, i.e., positive pairs. However, such optimization does not n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 9 vom: 01. Aug., Seite 7410-7427
1. Verfasser: Li, Jin (VerfasserIn)
Weitere Verfasser: Wang, Yaoming, Zhang, Xiaopeng, Jiang, Dongsheng, Dai, Wenrui, Li, Chenglin, Xiong, Hongkai, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM388777389
003 DE-627
005 20250807232037.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3571990  |2 doi 
028 5 2 |a pubmed25n1523.xml 
035 |a (DE-627)NLM388777389 
035 |a (NLM)40392641 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jin  |e verfasserin  |4 aut 
245 1 0 |a Contrastive Learning via Variational Information Bottleneck 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent advances in self-supervised learning have witnessed great achievements, especially with the introduction of contrastive learning, where the goal is to maximize the mutual information between different augmentations of the same image, i.e., positive pairs. However, such optimization does not necessarily correspond to optimal representation due to noisy samples, thus inevitably being over-confident in the relevance between views. As a result, the learned model would capture spurious correlation and retain superfluous information that deteriorates representations. In this paper, we facilitate contrastive learning by reducing superfluous relevance between positive views. To this end, we introduce the representation entropy minimization regularization over the objective of vanilla contrastive learning, which forces representations to retain possibly the least information, thus alleviating superfluous relevance from irrelevant views. Then, we derive the analytical expression of the proposed objective by converting it to an information bottleneck problem and solving via variation approximation, which leads to a novel contrastive learning framework, termed as CLIMB, short for Contrastive Learning via variational InforMation Bottleneck. Experiments over multiple benchmarks demonstrate that CLIMB brings consistent improvement. Notably, using DINO as an instantiation, CLIMB achieves 4.5% and 3.5% gain under the k-NN classification metric with EfficientNet-B0 and ResNet-50 as backbones, respectively 
650 4 |a Journal Article 
700 1 |a Wang, Yaoming  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
700 1 |a Jiang, Dongsheng  |e verfasserin  |4 aut 
700 1 |a Dai, Wenrui  |e verfasserin  |4 aut 
700 1 |a Li, Chenglin  |e verfasserin  |4 aut 
700 1 |a Xiong, Hongkai  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 9 vom: 01. Aug., Seite 7410-7427  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:9  |g day:01  |g month:08  |g pages:7410-7427 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3571990  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 9  |b 01  |c 08  |h 7410-7427