Spectrum-Enhanced Graph Attention Network for Garment Mesh Deformation

We present a novel solution for mesh-based deformation simulation from a spectral perspective. Unlike existing approaches that demand separate training for each garment or body type and often struggle to produce rich folds and lifelike dynamics, our method achieves the quality of physics-based simul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 19. Mai
1. Verfasser: Li, Tianxing (VerfasserIn)
Weitere Verfasser: Shi, Rui, Zhu, Qing, Zhang, Liguo, Kanai, Takashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM388733918
003 DE-627
005 20250714102539.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3570523  |2 doi 
028 5 2 |a pubmed25n1411.xml 
035 |a (DE-627)NLM388733918 
035 |a (NLM)40388289 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Tianxing  |e verfasserin  |4 aut 
245 1 0 |a Spectrum-Enhanced Graph Attention Network for Garment Mesh Deformation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.05.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We present a novel solution for mesh-based deformation simulation from a spectral perspective. Unlike existing approaches that demand separate training for each garment or body type and often struggle to produce rich folds and lifelike dynamics, our method achieves the quality of physics-based simulations while maintaining superior efficiency within a unified model. The key to achieve this lies in the development of a spectrum-enhanced deformation network, a result of in-depth theoretical analysis bridging neural networks and garment deformations. This enhancement compels the network to focus on learning spectral information predominantly within the frequency band associated with intricate deformations. Furthermore, building upon standard blend skinning techniques, we introduce target-aware temporal skinning weights. The weights describe how the underlying human skeleton dynamically affects the mesh vertices according to the garment and body shape, as well as the motion state. We validate our method on various garments, bodies, and motions through extensive ablation studies. Finally, we conduct comparisons to confirm its superiority in generalization, deformation quality, and performance over several state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Shi, Rui  |e verfasserin  |4 aut 
700 1 |a Zhu, Qing  |e verfasserin  |4 aut 
700 1 |a Zhang, Liguo  |e verfasserin  |4 aut 
700 1 |a Kanai, Takashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 19. Mai  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:19  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3570523  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 19  |c 05