Cross-Modal Causal Representation Learning for Radiology Report Generation

Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance, which can relieve the heavy burden of radiologists by automatically generating the corresponding radiology reports according to the given radiology image. However, generating accurate lesion descript...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 26., Seite 2970-2985
Auteur principal: Chen, Weixing (Auteur)
Autres auteurs: Liu, Yang, Wang, Ce, Zhu, Jiarui, Li, Guanbin, Liu, Cheng-Lin, Lin, Liang
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM388631449
003 DE-627
005 20250714113714.0
007 cr uuu---uuuuu
008 250714s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3568746  |2 doi 
028 5 2 |a pubmed25n1417.xml 
035 |a (DE-627)NLM388631449 
035 |a (NLM)40378020 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Weixing  |e verfasserin  |4 aut 
245 1 0 |a Cross-Modal Causal Representation Learning for Radiology Report Generation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2025 
500 |a Date Revised 26.05.2025 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance, which can relieve the heavy burden of radiologists by automatically generating the corresponding radiology reports according to the given radiology image. However, generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases and inherent limitations of radiological imaging, such as low resolution and noise interference. To address these issues, we propose a two-stage framework named Cross-Modal Causal Representation Learning (CMCRL), consisting of the Radiological Cross-modal Alignment and Reconstruction Enhanced (RadCARE) pre-training and the Visual-Linguistic Causal Intervention (VLCI) fine-tuning. In the pre-training stage, RadCARE introduces a degradation-aware masked image restoration strategy tailored for radiological images, which reconstructs high-resolution patches from low-resolution inputs to mitigate noise and detail loss. Combined with a multiway architecture and four adaptive training strategies (e.g., text postfix generation with degraded images and text prefixes), RadCARE establishes robust cross-modal correlations even with incomplete data. In the VLCI phase, we deploy causal front-door intervention through two modules: the Visual Deconfounding Module (VDM) disentangles local-global features without fine-grained annotations, while the Linguistic Deconfounding Module (LDM) eliminates context bias without external terminology databases. Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods, with ablation studies confirming the necessity of both stages. Code and models are available at https://github.com/WissingChen/CMCRL 
650 4 |a Journal Article 
700 1 |a Liu, Yang  |e verfasserin  |4 aut 
700 1 |a Wang, Ce  |e verfasserin  |4 aut 
700 1 |a Zhu, Jiarui  |e verfasserin  |4 aut 
700 1 |a Li, Guanbin  |e verfasserin  |4 aut 
700 1 |a Liu, Cheng-Lin  |e verfasserin  |4 aut 
700 1 |a Lin, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 26., Seite 2970-2985  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:26  |g pages:2970-2985 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3568746  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 26  |h 2970-2985