Recursive Confidence Training for Pseudo-Labeling Calibration in Semi-Supervised Few-Shot Learning
Semi-Supervised Few-Shot Learning (SSFSL) aims to address the data scarcity in few-shot learning by leveraging both a few labeled support data and abundant unlabeled data. In SSFSL, a classifier trained on scarce support data is often biased and thus assigns inaccurate pseudo-labels to the unlabeled...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 16. Mai |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2025
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article |
Accès en ligne |
Volltext |