Recursive Confidence Training for Pseudo-Labeling Calibration in Semi-Supervised Few-Shot Learning

Semi-Supervised Few-Shot Learning (SSFSL) aims to address the data scarcity in few-shot learning by leveraging both a few labeled support data and abundant unlabeled data. In SSFSL, a classifier trained on scarce support data is often biased and thus assigns inaccurate pseudo-labels to the unlabeled...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 16. Mai
Auteur principal: Jing, Kunlei (Auteur)
Autres auteurs: Ma, Hebo, Zhang, Chen, Wen, Lei, Zhang, Zhaorui
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article